• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • STEMfit: Student Centric Innovation to Improve STEM Educational Engagement Using Physical Activity, Wearable Technologies and Lean Methodologies.

    View/Open
    Willis524612-Published.pdf (504.9Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Willis, Charlene
    James, Daniel
    Parker, Jeff
    Lee, James
    Griffith University Author(s)
    Willis, Charlene
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    School-based education programmes are increasingly focused on the teaching of skills thought to be more suitable for an increasingly technological society. These STEM (Science, Technology, Engineering and Mathematics) skills are often seen as enablers for the workforce of tomorrow. This paper utilises wearable sensors during prescribed physical activity as a vehicle for student engagement through their direct involvement in the creation of personalised data sets, direct questioning about their physical activity and the development of a nexus between what they do and fundamental physical properties such as the laws of motion. ...
    View more >
    School-based education programmes are increasingly focused on the teaching of skills thought to be more suitable for an increasingly technological society. These STEM (Science, Technology, Engineering and Mathematics) skills are often seen as enablers for the workforce of tomorrow. This paper utilises wearable sensors during prescribed physical activity as a vehicle for student engagement through their direct involvement in the creation of personalised data sets, direct questioning about their physical activity and the development of a nexus between what they do and fundamental physical properties such as the laws of motion. Results demonstrate the technical challenges, including the selection of appropriate monitoring technologies and development of appropriate technology tools suitable for school cohorts, together with sample results obtained through field trials in metropolitan and remote schools to demonstrate the utility of such technologies.
    View less >
    Conference Title
    Multidisciplinary Digital Publishing Institute Proceedings
    Volume
    49
    Issue
    1
    DOI
    https://doi.org/10.3390/proceedings2020049033
    Copyright Statement
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Sports science and exercise not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/414133
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander