Potential role of curcumin and its nanoformulations to treat various types of cancers
View/ Open
File version
Version of Record (VoR)
Author(s)
Kabir, Md Tanvir
Rahman, Md Habibur
Akter, Rokeya
Behl, Tapan
Kaushik, Deepak
Mittal, Vineet
Pandey, Parijat
Akhtar, Muhammad Furqan
Saleem, Ammara
Albadrani, Ghadeer M
Kamel, Mohamed
Khalifa, Shaden AM
El-Seedi, Hesham R
Abdel-Daim, Mohamed M
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diag-nosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer ...
View more >Cancer is a major burden of disease globally. Each year, tens of millions of people are diag-nosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
View less >
View more >Cancer is a major burden of disease globally. Each year, tens of millions of people are diag-nosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
View less >
Journal Title
Biomolecules
Volume
11
Issue
3
Copyright Statement
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Subject
Biochemistry and cell biology
Oncology and carcinogenesis
Science & Technology
Life Sciences & Biomedicine
Biochemistry & Molecular Biology
Curcuma longa
curcumin
anticancer
nanoformulations
cellular mechanisms
mechanism of action