Rapid mechanical squeezing with pulsed optomechanics
View/ Open
File version
Version of Record (VoR)
Author(s)
Bennett, James S
Bowen, Warwick P
Griffith University Author(s)
Year published
2018
Metadata
Show full item recordAbstract
Macroscopic mechanical oscillators can be prepared in quantum states and coherently manipulated using the optomechanical interaction. This has recently been used to prepare squeezed mechanical states. However, the scheme used in these experiments relies on slow, dissipative evolution that destroys the system's memory of its initial state. In this paper we propose a protocol based on a sequence of four pulsed optomechanical interactions. In addition to being coherent, our scheme executes in a time much shorter than a mechanical period. We analyse applications in impulsive force sensing and preservation of Schrödinger cat ...
View more >Macroscopic mechanical oscillators can be prepared in quantum states and coherently manipulated using the optomechanical interaction. This has recently been used to prepare squeezed mechanical states. However, the scheme used in these experiments relies on slow, dissipative evolution that destroys the system's memory of its initial state. In this paper we propose a protocol based on a sequence of four pulsed optomechanical interactions. In addition to being coherent, our scheme executes in a time much shorter than a mechanical period. We analyse applications in impulsive force sensing and preservation of Schrödinger cat states, which are useful in continuous-variable quantum information protocols.
View less >
View more >Macroscopic mechanical oscillators can be prepared in quantum states and coherently manipulated using the optomechanical interaction. This has recently been used to prepare squeezed mechanical states. However, the scheme used in these experiments relies on slow, dissipative evolution that destroys the system's memory of its initial state. In this paper we propose a protocol based on a sequence of four pulsed optomechanical interactions. In addition to being coherent, our scheme executes in a time much shorter than a mechanical period. We analyse applications in impulsive force sensing and preservation of Schrödinger cat states, which are useful in continuous-variable quantum information protocols.
View less >
Journal Title
New Journal of Physics
Volume
20
Issue
11
Copyright Statement
© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Subject
Physical sciences
Science & Technology
Physical Sciences
Physics, Multidisciplinary
Physics
quantum optomechanics