• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Rapid mechanical squeezing with pulsed optomechanics

    View/Open
    Bennett1173325-Published.pdf (864.2Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Bennett, James S
    Bowen, Warwick P
    Griffith University Author(s)
    Bennett, James S.
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Macroscopic mechanical oscillators can be prepared in quantum states and coherently manipulated using the optomechanical interaction. This has recently been used to prepare squeezed mechanical states. However, the scheme used in these experiments relies on slow, dissipative evolution that destroys the system's memory of its initial state. In this paper we propose a protocol based on a sequence of four pulsed optomechanical interactions. In addition to being coherent, our scheme executes in a time much shorter than a mechanical period. We analyse applications in impulsive force sensing and preservation of Schrödinger cat ...
    View more >
    Macroscopic mechanical oscillators can be prepared in quantum states and coherently manipulated using the optomechanical interaction. This has recently been used to prepare squeezed mechanical states. However, the scheme used in these experiments relies on slow, dissipative evolution that destroys the system's memory of its initial state. In this paper we propose a protocol based on a sequence of four pulsed optomechanical interactions. In addition to being coherent, our scheme executes in a time much shorter than a mechanical period. We analyse applications in impulsive force sensing and preservation of Schrödinger cat states, which are useful in continuous-variable quantum information protocols.
    View less >
    Journal Title
    New Journal of Physics
    Volume
    20
    Issue
    11
    DOI
    https://doi.org/10.1088/1367-2630/aaea15
    Copyright Statement
    © 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
    Subject
    Physical sciences
    Science & Technology
    Physical Sciences
    Physics, Multidisciplinary
    Physics
    quantum optomechanics
    Publication URI
    http://hdl.handle.net/10072/414206
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander