• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Effects of Nitrogen doping on Chemical, Optical and Electronic properties of Carbon Dots

    View/Open
    Embargoed until: 2023-04-29
    Author(s)
    Esmaeili, Mostafa
    Primary Supervisor
    Li, Qin
    Other Supervisors
    Thiel, David V
    Year published
    2022-04-29
    Metadata
    Show full item record
    Abstract
    Photoluminescent carbon dots have received significant research interest in recent years owing to their extraordinary optical properties, biocompatibility, and versatile functionalities. Nitrogen-doping is a widely used strategy for enhancing the photoelectronic functionalities of carbon dots. However, there is a lack of systematic study on the composition and concentration-dependency emission behaviour of N-doped carbon dots in the literature. In this study, multicolour carbon dots (CDs) having different degree of nitrogen doping were synthesized by varying the molar ratio of citric acid to urea in the precursor via ...
    View more >
    Photoluminescent carbon dots have received significant research interest in recent years owing to their extraordinary optical properties, biocompatibility, and versatile functionalities. Nitrogen-doping is a widely used strategy for enhancing the photoelectronic functionalities of carbon dots. However, there is a lack of systematic study on the composition and concentration-dependency emission behaviour of N-doped carbon dots in the literature. In this study, multicolour carbon dots (CDs) having different degree of nitrogen doping were synthesized by varying the molar ratio of citric acid to urea in the precursor via hydrothermal treatment. The effects of nitrogen doping on chemical, optical, and electronic properties of CDs were characterized using various techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR); fluorescence and absorption spectroscopy; fluorescence lifetime and Hall effect measurements. Three main emissive centres were recognized in concentration-dependent fluorescence study of N-CDs which can be ascribed to molecular type of fluorescence, core emission, and mid-gap nitrogen states on the edge/surface of CDs. A plausible mechanism in relation to the obtained results is proposed. This work provides insights on the opto-electro-tunability of CDs via N-doping.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Eng & Built Env
    DOI
    https://doi.org/10.25904/1912/4494
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    nitrogen doping
    multicolour carbon dots (CDs)
    Photoluminescent carbon dots
    composition
    hydrothermal treatment
    Publication URI
    http://hdl.handle.net/10072/414280
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander