• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • New approach to practical leakage-resilient public-key cryptography

    View/Open
    Alawatugoda522793-Published.pdf (961.8Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Chakraborty, Suvradip
    Alawatugoda, Janaka
    Rangan, Chandrasekaran Pandu
    Griffith University Author(s)
    Alawatugoda, Janaka A.
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    We present a new approach to construct several leakage-resilient cryptographic primitives, including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce an appropriate security model for LR-NIKE protocols in the bounded memory leakage (BML) settings. We then show a secure construction of the LR-NIKE protocol in the BML setting that achieves an optimal leakage rate, i.e., 1 - o(1). Our construction of LR-NIKE ...
    View more >
    We present a new approach to construct several leakage-resilient cryptographic primitives, including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce an appropriate security model for LR-NIKE protocols in the bounded memory leakage (BML) settings. We then show a secure construction of the LR-NIKE protocol in the BML setting that achieves an optimal leakage rate, i.e., 1 - o(1). Our construction of LR-NIKE requires a minimal use of a leak-free hardware component. We argue that the use of such a leak-free hardware component seems to be unavoidable in any construction of an LR-NIKE protocol, even in the BML setting. Finally, we show how to construct the aforementioned leakage-resilient primitives from such an LR-NIKE protocol as summarized below. All these primitives also achieve the same (optimal) leakage rate as the underlying LR-NIKE protocol. We show how to construct a leakage-resilient (LR) IND-CCA-2-secure PKE scheme in the BML model generically from a bounded LR-NIKE (BLR-NIKE) protocol. Our construction of LR-IND-CCA-2 secure PKE differs significantly from the state-of-the-art constructions of these primitives, which mainly use hash proof techniques to achieve leakage resilience. Moreover, our transformation preserves the leakage-rate of the underlying BLR-NIKE protocol. We introduce a new leakage model for AKE protocols, in the BML setting, and present a leakage-resilient AKE protocol construction from the LR-NIKE protocol. We introduce the first-ever leakage model for LLKE protocols in the BML setting and the first construction of such a leakage-resilient LLKE from the LR-NIKE protocol.
    View less >
    Journal Title
    Journal of Mathematical Cryptology
    Volume
    14
    Issue
    1
    DOI
    https://doi.org/10.1515/jmc-2019-0014
    Copyright Statement
    © The Author(s) 2020. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Cryptography
    Science & Technology
    Technology
    Computer Science, Theory & Methods
    Computer Science
    Leakage-resilient cryptography
    Publication URI
    http://hdl.handle.net/10072/414371
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander