• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Corner Detection Using Second-Order Generalized Gaussian Directional Derivative Representations

    Author(s)
    Zhang, Weichuan
    Sun, Changming
    Griffith University Author(s)
    Zhang, Weichuan
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Corner detection is a critical component of many image analysis and image understanding tasks, such as object recognition and image matching. Our research indicates that existing corner detection algorithms cannot properly depict the difference between edges and corners and this results in wrong corner detections. In this paper, the capability of second-order generalized (isotropic and anisotropic) Gaussian directional derivative filters to suppress Gaussian noise is evaluated. The second-order generalized Gaussian directional derivative representations of step edge, L-type corner, Y- or T-type corner, X-type corner, and ...
    View more >
    Corner detection is a critical component of many image analysis and image understanding tasks, such as object recognition and image matching. Our research indicates that existing corner detection algorithms cannot properly depict the difference between edges and corners and this results in wrong corner detections. In this paper, the capability of second-order generalized (isotropic and anisotropic) Gaussian directional derivative filters to suppress Gaussian noise is evaluated. The second-order generalized Gaussian directional derivative representations of step edge, L-type corner, Y- or T-type corner, X-type corner, and star-type corner are investigated and obtained. A number of properties for edges and corners are discovered which enable us to propose a new image corner detection method. Finally, the criteria on detection accuracy and average repeatability under affine image transformation, JPEG compression, and noise degradation, and the criteria on region repeatability are used to evaluate the proposed detector against nine state-of-the-art methods. The experimental results show that our proposed detector outperforms all the other tested detectors.
    View less >
    Journal Title
    IEEE Transactions on Pattern Analysis and Machine Intelligence
    Volume
    43
    Issue
    4
    DOI
    https://doi.org/10.1109/tpami.2019.2949302
    Subject
    Nanotechnology
    Artificial intelligence
    Image processing
    Publication URI
    http://hdl.handle.net/10072/414470
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander