• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical investigation of the influence of local effects on the transient start-up process of natural draft dry cooling towers in dispatchable power plants

    Author(s)
    Dong, Peixin
    Li, Xiaoxiao
    Sun, Yubiao
    Hooman, Kamel
    Guan, Zhiqiang
    Dai, Yuchen
    Gurgenci, Hal
    Griffith University Author(s)
    Dai, Yuchen
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    In exploring the suitability of natural draft dry cooling towers (NDDCTs) for dispatchable thermal power plants, the transient start-up process of NDDCTs is investigated numerically. It is an established fact that the draft caused by the density difference between the interior and outside air drives the tower flow at steady-state conditions. The study finds that, starting from cold, the tower flow goes through three stages before the steady-state is reached. In the first stage, natural convection is dominant. The stagnation of thermal plumes before pinch-off contributes to a sharp increase in the inlet air temperature and ...
    View more >
    In exploring the suitability of natural draft dry cooling towers (NDDCTs) for dispatchable thermal power plants, the transient start-up process of NDDCTs is investigated numerically. It is an established fact that the draft caused by the density difference between the interior and outside air drives the tower flow at steady-state conditions. The study finds that, starting from cold, the tower flow goes through three stages before the steady-state is reached. In the first stage, natural convection is dominant. The stagnation of thermal plumes before pinch-off contributes to a sharp increase in the inlet air temperature and the merger of rising caps further increases the rate at which the interior is heated. As the inside air warms up, an inside-outside density difference emerges and the draft starts contributing to the flow development in addition to the plumes. This is the second stage characterized by mixed convection. The distribution of air temperature inside tower becomes horizontally uniform and vertically linear through the mixed convection stage. In the third stage, the draft finally becomes the dominant mechanism and is sufficient to explain subsequent transition to steady-state and onwards. The dimensionless number, Richardson number (Ri) is introduced to identify the boundaries between these three stages. The cold air incursion is observed as a parallel cyclical phenomenon with impact on the tower flow development. A general criterion for steady state is proposed that accounts for cold air incursion. The results are validated against the experimental data from the University of Queensland natural draft dry cooling tower Gatton test rig and compared with the results of a simplified theoretical model. A better understanding of the start-up process through the numerical investigation presented in this paper provides insights to how to reduce the NDDCT transient response and thereby improving the dispatchability of the CST system employing the NDDCT.
    View less >
    Journal Title
    International Journal of Heat and Mass Transfer
    Volume
    133
    DOI
    https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.066
    Subject
    Engineering
    Mathematical sciences
    Physical sciences
    Science & Technology
    Physical Sciences
    Technology
    Thermodynamics
    Engineering, Mechanical
    Publication URI
    http://hdl.handle.net/10072/414535
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander