• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Predicting Unpanned Return to Hospital for Chronic Disease Patients

    View/Open
    Khanna505190-Published.pdf (264.0Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Khanna, Sankalp
    Good, Norm
    Boyle, Justin
    Griffith University Author(s)
    Khanna, Sankalp
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Preventing unplanned returns, including readmissions and representations to the emergency department is increasingly becoming a performance target for hospitals across the globe. Significant successes have been reported from interventions put in to place by hospitals to reduce their incidence. However, despite several risk stratification algorithms being proposed in recent years, there is limited use of these algorithms in hospital services to identify patients for enrolment into these intervention programs. This study identifies constraints limiting the practical use of such algorithms. We also develop and validate models ...
    View more >
    Preventing unplanned returns, including readmissions and representations to the emergency department is increasingly becoming a performance target for hospitals across the globe. Significant successes have been reported from interventions put in to place by hospitals to reduce their incidence. However, despite several risk stratification algorithms being proposed in recent years, there is limited use of these algorithms in hospital services to identify patients for enrolment into these intervention programs. This study identifies constraints limiting the practical use of such algorithms. We also develop and validate models that focus on clinically relevant patient cohorts and are thus better suited to practical deployment in hospitals, while still offering good predictive ability.
    View less >
    Conference Title
    Digital Health Innovation for Consumers, Clinicians, Connectivity and Community
    Volume
    227
    DOI
    https://doi.org/10.3233/978-1-61499-666-8-67
    Copyright Statement
    © 2016 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
    Subject
    Library and information studies
    Science & Technology
    Life Sciences & Biomedicine
    Medical Informatics
    Bed occupancy
    hospital bed capacity
    Publication URI
    http://hdl.handle.net/10072/414637
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander