• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Impacts of sugarcane (Saccharum sp.) soil and fertiliser management practices on nutrients and sediment in plot-scale runoff from simulated rainfall

    Author(s)
    Melland, AR
    Bosomworth, B
    Cook, FJ
    Silburn, DM
    Eyles, M
    Griffith University Author(s)
    Bosomworth, Bronwyn
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Runoff of nutrients and sediment from agricultural catchments can impair the health and resilience of aquatic ecosystems in receiving waterbodies. The sugarcane (Saccharum sp.) industry in Australia has adopted strategies to improve farm runoff water quality. Rainfall simulation trials were conducted to quantify the relative effectiveness of some sugarcane soil and fertiliser management practices on nutrient and sediment loss in runoff. The trials were conducted within the Herbert River catchment in the Wet Tropics of Queensland. Simulated rainfall (~76 mm h–1) was used to generate runoff from 1.70 m2 plots in first ratoon ...
    View more >
    Runoff of nutrients and sediment from agricultural catchments can impair the health and resilience of aquatic ecosystems in receiving waterbodies. The sugarcane (Saccharum sp.) industry in Australia has adopted strategies to improve farm runoff water quality. Rainfall simulation trials were conducted to quantify the relative effectiveness of some sugarcane soil and fertiliser management practices on nutrient and sediment loss in runoff. The trials were conducted within the Herbert River catchment in the Wet Tropics of Queensland. Simulated rainfall (~76 mm h–1) was used to generate runoff from 1.70 m2 plots in first ratoon sugarcane on well-drained Ferralsols at Abergowrie and from 1.55 m2 plots in sugarcane planted into furrows and mound beds on an imperfectly drained Luvisol at Trebonne. At Abergowrie, the practices studied were; crop residue retention after harvest (green cane trash blanketing), applying a liquid rather than a granular fertiliser, and applying fertiliser to the sub-surface rather than to the surface on ratoon phase sugarcane. At Trebonne, sub-surface fertiliser placement was studied on plant cane and after varying amounts of time and repeated rainfall after fertiliser application. Comparisons were made with a similar study in plant cane at Macknade. Particulate nitrogen (N), particulate phosphorus (P), and suspended sediment losses in runoff were reduced by crop residue retention, which was expected. Dissolved inorganic N (DIN) loads (but not concentrations) were also reduced by residue retention. Dissolved inorganic N and filterable reactive P concentrations in runoff were reduced by sub-surface fertiliser placement, as expected, and by the liquid fertiliser that was studied. In contrast to expectations, DIN concentrations increased in mound beds (but not in furrows) with increasing time and rainfall after fertiliser application. The increase was attributed mainly to increases in soil mineral N and runoff volume. The practice that was most effective at reducing DIN loads in runoff (64–85% reduction) was sub-surface rather than surface placement of fertiliser.
    View less >
    Journal Title
    Soil and Tillage Research
    Volume
    216
    DOI
    https://doi.org/10.1016/j.still.2021.105259
    Subject
    Agricultural, veterinary and food sciences
    Biological sciences
    Environmental sciences
    Science & Technology
    Life Sciences & Biomedicine
    Soil Science
    Agriculture
    Queensland
    Publication URI
    http://hdl.handle.net/10072/415547
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander