• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Leaf litter species affects decomposition rate and nutrient release in a cocoa plantation

    Author(s)
    Bai, Shahla Hosseini
    Gallart, Marta
    Singh, Kanika
    Hannet, Godfrey
    Komolong, Birte
    Yinil, David
    Field, Damien J
    Muqaddas, Bushra
    Wallace, Helen M
    Griffith University Author(s)
    Gallart Diumenge, Marta
    Wallace, Helen M.
    Hosseini-Bai, Shahla
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Mineral nutrient fluxes derived from litterfall are key components of nutrient biogeochemical cycles in both natural and agroforesty systems. Cocoa production systems are generally nutrient depleted and may benefit from on external nutrient application to maintain primary productivity. However, in developing countries the main source of nutrients is often nutrient recycling through decomposing leaf litter, and in this regard shade-tree species play an important role in cocoa agroforestry. This study aimed to investigate the nutrient inputs of litter from two shade-tree species (Canarium indium and Gliricidia sepium) and cocoa ...
    View more >
    Mineral nutrient fluxes derived from litterfall are key components of nutrient biogeochemical cycles in both natural and agroforesty systems. Cocoa production systems are generally nutrient depleted and may benefit from on external nutrient application to maintain primary productivity. However, in developing countries the main source of nutrients is often nutrient recycling through decomposing leaf litter, and in this regard shade-tree species play an important role in cocoa agroforestry. This study aimed to investigate the nutrient inputs of litter from two shade-tree species (Canarium indium and Gliricidia sepium) and cocoa trees (Theobroma cacao) after 15 months of decomposition in a cocoa plantation. Litter from G. sepium lost more mass (59%) than T. cacao (37%) and C. indium (10%), and showed a higher average concentration of total nitrogen (TN), boron (B), iron (Fe) and phosphorus (P) after 15 months of field incubation than that of C. indium. It also showed a low C:N ratio and N release, which suggest N mineralisation. All litter species showed high C:P ratio and negative P release, which suggests P immobilisation. Litter from G. sepium and T. cacao showed a rapid K release after 1 month of decomposition. The differing mass loss rates and litter nutrient concentrations of the three species could benefit T. cacao by providing asynchronous nutrient inputs and improve long-term sustainability of mixed-species plantations.
    View less >
    Journal Title
    Agriculture, Ecosystems & Environment
    Volume
    324
    DOI
    https://doi.org/10.1016/j.agee.2021.107705
    Subject
    Agricultural, veterinary and food sciences
    Environmental sciences
    Human society
    Science & Technology
    Life Sciences & Biomedicine
    Agriculture, Multidisciplinary
    Ecology
    Publication URI
    http://hdl.handle.net/10072/415559
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander