• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modelling the complexity of the foot and ankle during human locomotion: the development and validation of a multi-segment foot model using biplanar videoradiography

    Author(s)
    Maharaj, Jayishni N
    Rainbow, Michael J
    Cresswell, Andrew G
    Kessler, Sarah
    Konow, Nicolai
    Gehring, Dominic
    Lichtwark, Glen A
    Griffith University Author(s)
    Maharaj, Jayishni N.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    We developed and validated a multi-segment foot and ankle model for human walking and running. The model has 6-segments, and 7 degrees of freedom; motion between foot segments were constrained with a single oblique axis to enable triplanar motion [Joint Constrained (JC) model]. The accuracy of the JC model and that of a conventional model using a 6 degrees of freedom approach were assessed by comparison to segment motion determined with biplanar videoradiography. Compared to the 6-DoF model, our JC model demonstrated significantly smaller RMS differences [JC: 2.19° (1.43–2.73); 6-DoF: 3.25° (1.37–5.89)] across walking and ...
    View more >
    We developed and validated a multi-segment foot and ankle model for human walking and running. The model has 6-segments, and 7 degrees of freedom; motion between foot segments were constrained with a single oblique axis to enable triplanar motion [Joint Constrained (JC) model]. The accuracy of the JC model and that of a conventional model using a 6 degrees of freedom approach were assessed by comparison to segment motion determined with biplanar videoradiography. Compared to the 6-DoF model, our JC model demonstrated significantly smaller RMS differences [JC: 2.19° (1.43–2.73); 6-DoF: 3.25° (1.37–5.89)] across walking and running. The JC model is thus capable of more accurate musculoskeletal analyses and is also well suited for predictive simulations.
    View less >
    Journal Title
    Computer Methods in Biomechanics and Biomedical Engineering
    Volume
    25
    Issue
    5
    DOI
    https://doi.org/10.1080/10255842.2021.1968844
    Subject
    Dentistry
    Biomedical engineering
    Science & Technology
    Technology
    Computer Science, Interdisciplinary Applications
    Computer Science
    Publication URI
    http://hdl.handle.net/10072/415568
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander