• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Investigating Techniques to Reduce Evaporation from Small Reservoirs in Australia

    Author(s)
    Helfer, F
    Lemckert, C
    Zhang, H
    Griffith University Author(s)
    Zhang, Hong
    Helfer, Fernanda
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Climate change has been posing a great pressure on water resources, particularly in Australia. In South-East Queensland (SEQ), the annual evaporation is expected to rise by about 16 per cent in the next 60 years due to increasing greenhouse gas emissions. As the region relies on a large volume of stored water, the minimisation of evaporation is a key factor in guaranteeing availability of water in the future. This paper analyses the efficiency of some existing techniques in reducing evaporation from small dams within SEQ. The use of suspended covers, destratification systems and windbreaks was investigated using ...
    View more >
    Climate change has been posing a great pressure on water resources, particularly in Australia. In South-East Queensland (SEQ), the annual evaporation is expected to rise by about 16 per cent in the next 60 years due to increasing greenhouse gas emissions. As the region relies on a large volume of stored water, the minimisation of evaporation is a key factor in guaranteeing availability of water in the future. This paper analyses the efficiency of some existing techniques in reducing evaporation from small dams within SEQ. The use of suspended covers, destratification systems and windbreaks was investigated using modelling. Of these techniques, suspended covers showed the greatest potential for reducing evaporation (in the order of 88 per cent). The efficiency of windbreaks was around 27 per cent, while the use of destratification system did not change evaporation rates. These results are encouraging, and further research is warranted to determine the cost-effectiveness and environmental impacts of the use of suspended covers and windbreaks to reduce evaporation from small dams.
    View less >
    Conference Title
    34th IAHR Congress 2011 - Balance and Uncertainty: Water in a Changing World, Incorporating the 33rd Hydrology and Water Resources Symposium and the 10th Conference on Hydraulics in Water Engineering
    Publisher URI
    http://www.iahr.net/e-shop/store/viewItem.asp?idProduct=138
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this conference Please refer to the conference link for access to the definitive, published version or contact the authors for more information
    Subject
    Water resources engineering
    Publication URI
    http://hdl.handle.net/10072/42422
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander