• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Complete positivity for time-dependent qubit master equations

    Thumbnail
    View/Open
    74568_1.pdf (169.8Kb)
    Author(s)
    Hall, Michael JW
    Griffith University Author(s)
    Hall, Michael J.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    It is shown that if the decoherence matrix corresponding to a qubit master equation has a block-diagonal real part, then the evolution is determined by a one-dimensional oscillator equation. Further, when the full decoherence matrix is block-diagonal, then the necessary and sufficient conditions for completely positive evolution may be formulated in terms of the oscillator Hamiltonian or Lagrangian. When the solution of the oscillator equation is not known, an explicit sufficient condition for complete positivity can still be obtained, based on a Hamiltonian/Lagrangian inequality. A rotational form-invariance property is ...
    View more >
    It is shown that if the decoherence matrix corresponding to a qubit master equation has a block-diagonal real part, then the evolution is determined by a one-dimensional oscillator equation. Further, when the full decoherence matrix is block-diagonal, then the necessary and sufficient conditions for completely positive evolution may be formulated in terms of the oscillator Hamiltonian or Lagrangian. When the solution of the oscillator equation is not known, an explicit sufficient condition for complete positivity can still be obtained, based on a Hamiltonian/Lagrangian inequality. A rotational form-invariance property is used to characterize the evolution via a single first-order nonlinear differential equation, enabling some further exact results to be obtained. A class of master equations is identified for which complete positivity reduces to the simpler condition of positivity.
    View less >
    Journal Title
    Journal of Physics A
    Volume
    41
    Issue
    20
    DOI
    https://doi.org/10.1088/1751-8113/41/20/205302
    Copyright Statement
    © 2011 Institute of Physics Publishing. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Mathematical aspects of classical mechanics, quantum mechanics and quantum information theory
    Physical sciences
    Quantum information, computation and communication
    Publication URI
    http://hdl.handle.net/10072/42437
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander