• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Drive-in Steel Storage Racks I: Stiffness Tests and 3D Load Transfer Mechanisms

    Thumbnail
    View/Open
    73579_1.pdf (835.0Kb)
    Author(s)
    Gilbert, Benoit P
    Rasmussen, Kim JR
    Griffith University Author(s)
    Gilbert, Benoit
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Steel storage racks, made of cold-formed steel, are used extensively in industry for storing goods. Two main racking systems prevail, referred to as "selective" and "drive-in" racks. International racking design codes mainly deal with selective racks, while limited design guidelines are available for drive-in racks. Drive-in racks require minimum floor space by storing pallets one after the other with no space between them. The forklift truck drives into the rack to store the pallets on the first-in, last-out principle. To allow forklift passage, drive-in racks can only be braced at the back (spine bracing) and at the top ...
    View more >
    Steel storage racks, made of cold-formed steel, are used extensively in industry for storing goods. Two main racking systems prevail, referred to as "selective" and "drive-in" racks. International racking design codes mainly deal with selective racks, while limited design guidelines are available for drive-in racks. Drive-in racks require minimum floor space by storing pallets one after the other with no space between them. The forklift truck drives into the rack to store the pallets on the first-in, last-out principle. To allow forklift passage, drive-in racks can only be braced at the back (spine bracing) and at the top (plan bracing) in the down-aisle direction resulting in a complex slender structure with poorly understood 3D behavior and increased risk of collapse. As yet, tests on drive-in rack systems to accurately capture their 3D behavior are not available in the literature. This paper presents experimental results from full-scale tests conducted on a complete drive-in rack system. Experimental investigations of the load transfer and relative stiffness under various horizontal loading conditions are presented. Experiments have been performed on loaded and unloaded racks.
    View less >
    Journal Title
    Journal of Structural Engineering
    Volume
    138
    Issue
    2
    DOI
    https://doi.org/10.1061/(ASCE)ST.1943-541X.0000449
    Copyright Statement
    © 2011 American Society of Civil Engineers (ASCE). This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Civil engineering
    Structural engineering
    Materials engineering
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/42444
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander