• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A proof of Clausius' theorem for time reversible deterministic microscopic dynamics

    Author(s)
    Evans, Denis J.
    Williams, Stephen R.
    Bernhardt, Debra
    Griffith University Author(s)
    Bernhardt, Debra J.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    In 1854 Clausius proved the famous theorem that bears his name by assuming the second "law" of thermodynamics. In the present paper we give a proof that requires no such assumption. Our proof rests on the laws of mechanics, a T-mixing property, an ergodic consistency condition, and on the axiom of causality. Our result relies on some recently derived theorems, such as the Evans-Searles and the Crooks fluctuation theorems and the recently discovered relaxation and dissipation theorems.In 1854 Clausius proved the famous theorem that bears his name by assuming the second "law" of thermodynamics. In the present paper we give a proof that requires no such assumption. Our proof rests on the laws of mechanics, a T-mixing property, an ergodic consistency condition, and on the axiom of causality. Our result relies on some recently derived theorems, such as the Evans-Searles and the Crooks fluctuation theorems and the recently discovered relaxation and dissipation theorems.
    View less >
    Journal Title
    Journal of Chemical Physics
    Volume
    134
    Issue
    20
    DOI
    https://doi.org/10.1063/1.3592531
    Subject
    Physical sciences
    Chemical sciences
    Chemical thermodynamics and energetics
    Engineering
    Publication URI
    http://hdl.handle.net/10072/42445
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander