• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Sediment CO2 Flux from a Mangrove in Southern China: Is It Controlled by Spatiotemporal, Biotic or Physical Factors?

    Thumbnail
    View/Open
    Lee7147472-Published.pdf (3.271Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Nie, S
    Ouyang, X
    Wang, W
    Zhu, Z
    Guo, F
    Yang, Z
    Lee, SY
    Griffith University Author(s)
    Lee, Joe Y.
    Year published
    2023
    Metadata
    Show full item record
    Abstract
    Carbon gas flux is important for studies on carbon dynamics in mangroves, but the controlling factors have not always been sufficiently understood. In this study, it is suggested that sediment carbon dioxide (CO2) fluxes in a natural mangrove in Southern China are controlled by tidal positions, seasons, species, the densities of crab burrows and pneumatophores, light conditions and sediment temperature. All these factors account for 51.47% variation in CO2 flux from the sediment–air interface. CO2 flux generally decreased along the tidal position from landward to seaward, and was higher in the dry season than in the wet ...
    View more >
    Carbon gas flux is important for studies on carbon dynamics in mangroves, but the controlling factors have not always been sufficiently understood. In this study, it is suggested that sediment carbon dioxide (CO2) fluxes in a natural mangrove in Southern China are controlled by tidal positions, seasons, species, the densities of crab burrows and pneumatophores, light conditions and sediment temperature. All these factors account for 51.47% variation in CO2 flux from the sediment–air interface. CO2 flux generally decreased along the tidal position from landward to seaward, and was higher in the dry season than in the wet season. CO2 flux was highest in Avicennia marina (grey mangrove) in comparison with Aegiceras corniculatum (river mangrove) and Kandelia obovata. Pneumatophores and crab burrows promoted sediment CO2 flux in the mangrove at a rate of 18.29 and 15.52 mmol m−2 d−1. Dark flux was higher than light flux. Sediment temperature has a negative influence on CO2 flux. Pneumatophores explain the most variation (13.9%) in CO2 flux among the above factors. Our study suggests that the photosynthesis activity of microphytobenthos is an important factor driving the change of CO2 emissions in this natural mangrove. This is of great significance for the study and for the full exploitation of the carbon sink potential of mangroves.
    View less >
    Journal Title
    Forests
    Volume
    14
    Issue
    4
    DOI
    https://doi.org/10.3390/f14040782
    Copyright Statement
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
    Subject
    Marine and estuarine ecology (incl. marine ichthyology)
    Forestry sciences
    Ecology
    Publication URI
    http://hdl.handle.net/10072/425561
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander