• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Use of speech presence uncertainty with MMSE spectral energy estimation for robust automatic speech recognition

    Author(s)
    Stark, A
    Paliwal, K
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    In this paper, we investigate the use of the minimum mean square error (MMSE) spectral energy estimator for use in environmentrobust automatic speech recognition (ASR). In the past, it has been common to use the MMSE log-spectral amplitude estimator for this task. However, this estimator was originally derived under subjective human listening criteria. Therefore its complex suppression rule may not be optimal for use in ASR. On the other hand, it can be shown that the MMSE spectral energy estimator is closely related to the MMSE Mel-frequency cepstral coefficient (MFCC) estimator. Despite this, the spectral energy estimator ...
    View more >
    In this paper, we investigate the use of the minimum mean square error (MMSE) spectral energy estimator for use in environmentrobust automatic speech recognition (ASR). In the past, it has been common to use the MMSE log-spectral amplitude estimator for this task. However, this estimator was originally derived under subjective human listening criteria. Therefore its complex suppression rule may not be optimal for use in ASR. On the other hand, it can be shown that the MMSE spectral energy estimator is closely related to the MMSE Mel-frequency cepstral coefficient (MFCC) estimator. Despite this, the spectral energy estimator has tended to suffer from the problem of excessive residual noise. We examine the cause of this residual noise and show that the introduction of a heuristic based speech presence uncertainty (SPU) can significantly improve its performance as a front-end ASR enhancement regime. The proposed spectral energy SPU estimator is evaluated on the Aurora2, RM and OLLO2 speech recognition tasks and can be shown to significantly improve additive noise robustness over the more common spectral amplitude and log-spectral amplitude estimators.
    View less >
    Journal Title
    Speech Communication
    Volume
    53
    DOI
    https://doi.org/10.1016/j.specom.2010.08.001
    Subject
    Signal processing
    Cognitive and computational psychology
    Linguistics
    Publication URI
    http://hdl.handle.net/10072/42592
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander