• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Maximum likelihood sub-band adaptation for robust speech recognition

    Author(s)
    Zhu, DL
    Nakamura, S
    Paliwal, KK
    Wang, RH
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Noise-robust speech recognition has become an important area of research in recent years. In current speech recognition systems, the Mel-frequency cepstrum coefficients (MFCCs) are used as recognition features. When the speech signal is corrupted by narrow-band noise, the entire MFCC feature vector gets corrupted and it is not possible to exploit the frequency-selective property of the noise signal to make the recognition system robust. Recently, a number of sub-band speech recognition approaches have been proposed in the literature, where the full-band power spectrum is divided into several sub-bands and then the sub-bands ...
    View more >
    Noise-robust speech recognition has become an important area of research in recent years. In current speech recognition systems, the Mel-frequency cepstrum coefficients (MFCCs) are used as recognition features. When the speech signal is corrupted by narrow-band noise, the entire MFCC feature vector gets corrupted and it is not possible to exploit the frequency-selective property of the noise signal to make the recognition system robust. Recently, a number of sub-band speech recognition approaches have been proposed in the literature, where the full-band power spectrum is divided into several sub-bands and then the sub-bands are combined depending on their reliability. In conventional sub-band approaches the reliability can only be set experimentally or estimated during training procedures, which may not match the observed data and often causes degradation of performance. We propose a novel sub-band approach, where frequency sub-bands are multiplied with weighting factors and then combined and converted to cepstra, which have proven to be more robust than both full-band and conventional sub-band cepstra in our experiments. Furthermore, the weighting factors can be estimated by using maximum likelihood adaptation approaches in order to minimize the mismatch between trained models and observed features. We evaluated our methods on AURORA2 and Resource Management tasks and obtained consistent performance improvement on both tasks.
    View less >
    Journal Title
    Speech Communication
    Volume
    47
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/505597/description#description
    DOI
    https://doi.org/10.1016/j.specom.2005.02.006
    Copyright Statement
    © 2005 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links
    Subject
    Cognitive and computational psychology
    Linguistics
    Publication URI
    http://hdl.handle.net/10072/4272
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander