Show simple item record

dc.contributor.authorZwierz, Marcinen_US
dc.contributor.authorA. Pe´rez-Delgado, Carlosen_US
dc.contributor.authorKok, Pieteren_US
dc.date.accessioned2017-04-24T10:18:29Z
dc.date.available2017-04-24T10:18:29Z
dc.date.issued2010en_US
dc.date.modified2012-06-07T21:58:11Z
dc.identifier.issn00319007en_US
dc.identifier.doi10.1103/PhysRevLett.105.180402en_US
dc.identifier.urihttp://hdl.handle.net/10072/42768
dc.description.abstractQuantum metrology promises improved sensitivity in parameter estimation over classical procedures. However, there is a debate over the question of how the sensitivity scales with the resources and the number of queries that are used in estimation procedures. Here, we reconcile the physical definition of the relevant resources used in parameter estimation with the information-theoretical scaling in terms of the query complexity of a quantum network. This leads to a completely general optimality proof of the Heisenberg limit for quantum metrology. We give an example of how our proof resolves paradoxes that suggest sensitivities beyond the Heisenberg limit, and we show that the Heisenberg limit is an information-theoretic interpretation of the Margolus-Levitin bound, rather than Heisenberg's uncertainty relation.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_US
dc.format.extent84902 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglishen_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.publisher.placeUnited Statesen_US
dc.relation.ispartofstudentpublicationNen_US
dc.relation.ispartofpagefrom180402-1en_US
dc.relation.ispartofpageto180402-4en_US
dc.relation.ispartofissue18en_US
dc.relation.ispartofjournalPhysical Review Lettersen_US
dc.relation.ispartofvolume105en_US
dc.rights.retentionYen_US
dc.subject.fieldofresearchQuantum Information, Computation and Communicationen_US
dc.subject.fieldofresearchQuantum Opticsen_US
dc.subject.fieldofresearchQuantum Physics not elsewhere classifieden_US
dc.subject.fieldofresearchcode020603en_US
dc.subject.fieldofresearchcode020604en_US
dc.subject.fieldofresearchcode020699en_US
dc.titleGeneral Optimality of the Heisenberg Limit for Quantum Metrologyen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.rights.copyrightCopyright 2010 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.en_US
gro.date.issued2010
gro.hasfulltextFull Text


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record