Evolutionary optimization of rotational population transfer
Author(s)
Rouzee, Arnaud
Ghafur, Omair
Vidma, Konstantin
Gijsbertsen, Arjan
M. Shir, Ofer
Bäck, Thomas
Meijer, Afric
J. van der Zande, Wim
Parker, David
J. J. Vrakking, Marc
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
We present experimental and numerical studies on control of rotational population transfer of NO(J = 1/2) molecules to higher rotational states. We are able to transfer 57% of the population to the J = 5/2 state and 46% to J = 9/2, in good agreement with quantum mechanical simulations. The optimal pulse shapes are composed of pulse sequences with delays corresponding to the beat frequencies of states on the rotational ladder. The evolutionary algorithm is limited by experimental constraints such as volume averaging and the finite laser intensity used, the latter to circumvent ionization. Without these constraints, near-perfect ...
View more >We present experimental and numerical studies on control of rotational population transfer of NO(J = 1/2) molecules to higher rotational states. We are able to transfer 57% of the population to the J = 5/2 state and 46% to J = 9/2, in good agreement with quantum mechanical simulations. The optimal pulse shapes are composed of pulse sequences with delays corresponding to the beat frequencies of states on the rotational ladder. The evolutionary algorithm is limited by experimental constraints such as volume averaging and the finite laser intensity used, the latter to circumvent ionization. Without these constraints, near-perfect control (>98%) is possible. In addition, we show that downward control, moving molecules from high to low rotational states, is also possible.
View less >
View more >We present experimental and numerical studies on control of rotational population transfer of NO(J = 1/2) molecules to higher rotational states. We are able to transfer 57% of the population to the J = 5/2 state and 46% to J = 9/2, in good agreement with quantum mechanical simulations. The optimal pulse shapes are composed of pulse sequences with delays corresponding to the beat frequencies of states on the rotational ladder. The evolutionary algorithm is limited by experimental constraints such as volume averaging and the finite laser intensity used, the latter to circumvent ionization. Without these constraints, near-perfect control (>98%) is possible. In addition, we show that downward control, moving molecules from high to low rotational states, is also possible.
View less >
Journal Title
Physical Review A
Volume
84
Issue
3
Subject
Atomic and Molecular Physics
Mathematical Sciences
Physical Sciences
Chemical Sciences