• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Low complexity GMM-based block quantisation of images using the discrete cosine transform

    Author(s)
    Paliwal, KK
    So, S
    Griffith University Author(s)
    Paliwal, Kuldip K.
    So, Stephen
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    While block transform image coding has not been very popular lately in the presence of current state-of-the-art wavelet-based coders, the Gaussian mixture model (GMM)-based block quantiser, without the use of entropy coding, is still very competitive in the class of fixed rate transform coders. In this paper, a GMM-based block quantiser of low computational complexity is presented which is based on the discrete cosine transform (DCT). It is observed that the assumption of Gaussian mixture components in a GMM having Gauss-Markov properties is a reasonable one with the DCT approaching the optimality of the Karhunen-Lo/`eve ...
    View more >
    While block transform image coding has not been very popular lately in the presence of current state-of-the-art wavelet-based coders, the Gaussian mixture model (GMM)-based block quantiser, without the use of entropy coding, is still very competitive in the class of fixed rate transform coders. In this paper, a GMM-based block quantiser of low computational complexity is presented which is based on the discrete cosine transform (DCT). It is observed that the assumption of Gaussian mixture components in a GMM having Gauss-Markov properties is a reasonable one with the DCT approaching the optimality of the Karhunen-Lo/`eve transform (KLT) as a decorrelator. Performance gains of 6 to 7 dB are reported over the traditional single Gaussian block quantiser at 1 bit per pixel. The DCT possesses two advantages over the KLT: being fixed and source independent, which means it only needs to be applied once; and the availability of fast and efficient implementations. These advantages, together with bitrate scalability, result in a block quantiser that is considerably faster and less complex while the novelty of using a GMM to model the source probability density function is still preserved.
    View less >
    Journal Title
    Signal Processing: Image Communication
    Volume
    20
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/505651/description#description
    DOI
    https://doi.org/10.1016/j.image.2005.03.001
    Copyright Statement
    © 2005 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links.
    Subject
    Electrical and Electronic Engineering
    Publication URI
    http://hdl.handle.net/10072/4281
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander