• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Robust TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters

    Author(s)
    Han, Yanhe
    Qiu, Jingxia
    Miao, Yuqing
    Han, Jisheng
    Zhang, Shanqing
    Zhang, Haimin
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Zhang, Shanqing
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    A TiO2/BDD heterojunction photoanode, utilizing the inherent properties of nanostructured titanium dioxide (TiO2) and boron-doped diamond (BDD), was prepared and used to determine chemical oxygen demand (COD) in wastewaters. The TiO2 nanoparticles were dip-coated on a BDD substrate and subject to calcination processes. A uniform, continuous and robust mixed-phase (anatase and rutile) TiO2/BDD heterojunction electrode was obtained. The TiO2/BDD heterojunction electrode was evaluated using a series of materials characterisation, electrical and electrochemical techniques. The preliminary results suggest the elevated ...
    View more >
    A TiO2/BDD heterojunction photoanode, utilizing the inherent properties of nanostructured titanium dioxide (TiO2) and boron-doped diamond (BDD), was prepared and used to determine chemical oxygen demand (COD) in wastewaters. The TiO2 nanoparticles were dip-coated on a BDD substrate and subject to calcination processes. A uniform, continuous and robust mixed-phase (anatase and rutile) TiO2/BDD heterojunction electrode was obtained. The TiO2/BDD heterojunction electrode was evaluated using a series of materials characterisation, electrical and electrochemical techniques. The preliminary results suggest the elevated photoelectrocatalytic activity over the oxidation of organic compounds stemmed from the formation of the p-n junction of the TiO2/BDD electrode. The TiO2/ BDD electrode has an excellent resistance towards strong acid due to the use of BDD substrate, which is an added advantage for practical application. Under the optimized experimental conditions, the TiO2/BDD electrode is capable of indiscriminately oxidizing a wide spectrum of organic compounds in a photoelectrochemical thin-layer cell. This bestows the photoelectrochemical system with the ability to measure the COD of synthetic and real samples in a fast, sensitive, reproducible and accurate fashion. In particular, a typical analysis time of 5 minutes, a practical detection limit of 0.12 mg L 1 COD, a RSD% value of 1.5% and a linear range of 0-300 mg L 1 were achieved. The TiO2/BDD electrode can be an ideal sensor for online and in situ monitoring of organic pollutants in wastewaters.
    View less >
    Journal Title
    Analytical Methods
    Volume
    3
    Issue
    9
    DOI
    https://doi.org/10.1039/c1ay05193h
    Subject
    Analytical chemistry
    Electroanalytical chemistry
    Other chemical sciences
    Environmental management not elsewhere classified
    Nanofabrication, growth and self assembly
    Publication URI
    http://hdl.handle.net/10072/42811
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander