• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • High-efficiency cluster-state generation with atomic ensembles via the dipole-blockade mechanism

    Thumbnail
    View/Open
    74567_1.pdf (318.7Kb)
    Author(s)
    Zwierz, Marcin
    Kok, Pieter
    Griffith University Author(s)
    Zwierz, Marcin
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    We demonstrate theoretically a scheme for cluster-state generation, based on atomic ensembles and the dipole-blockade mechanism. In the protocol, atomic ensembles serve as single-qubit systems. Therefore, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultracold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p_success~?^Q/2, where ? is the combined ...
    View more >
    We demonstrate theoretically a scheme for cluster-state generation, based on atomic ensembles and the dipole-blockade mechanism. In the protocol, atomic ensembles serve as single-qubit systems. Therefore, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultracold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p_success~?^Q/2, where ? is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer.
    View less >
    Journal Title
    Physical Review A
    Volume
    79
    Issue
    2
    DOI
    https://doi.org/10.1103/PhysRevA.79.022304
    Copyright Statement
    © 2009 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Quantum Information, Computation and Communication
    Quantum Optics
    Quantum Physics not elsewhere classified
    Mathematical Sciences
    Physical Sciences
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/42828
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander