• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • New personal sampler for viable airborne viruses: feasibility study

    Author(s)
    Agranovski, IE
    Safatov, AS
    Borodulin, AI
    Pyankov, OV
    Petrishchenko, VA
    Sergeev, AN
    Sergeev, AA
    Agranovski, V
    Grinshpun, SA
    Griffith University Author(s)
    Agranovski, Igor E.
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    While various sampling methods exist for collecting and enumerating airborne bacteria and fungi, no credible methodology has yet been developed for airborne viruses. A new sampling method for monitoring the personal exposure to bioaerosol particles has recently been developed and evaluated with bacteria and fungi. In this method, bacterial/fungal aerosol is aspirated and transported through a porous medium, which is submerged into a liquid layer. As the air is split into numerous bubbles, the particles are scavenged by these bubbles and effectively removed. The current feasibility study was initiated to evaluate the efficiency ...
    View more >
    While various sampling methods exist for collecting and enumerating airborne bacteria and fungi, no credible methodology has yet been developed for airborne viruses. A new sampling method for monitoring the personal exposure to bioaerosol particles has recently been developed and evaluated with bacteria and fungi. In this method, bacterial/fungal aerosol is aspirated and transported through a porous medium, which is submerged into a liquid layer. As the air is split into numerous bubbles, the particles are scavenged by these bubbles and effectively removed. The current feasibility study was initiated to evaluate the efficiency of the new personal sampler prototype ("bubbler") with airborne viable viruses. Two common viral strains, Influenza (stress-sensitive) and Vaccinia (robust), were aerosolized in the test chamber and collected by two identical "bubblers" that operated simultaneously for a duration of upto 5 min. A virus maintenance liquid, proven to be the optimum collecting environment for the test organisms, was used as a collection fluid. After sampling, the collecting fluid was analyzed and the viral recovery rate was determined. The overall recovery (affected not only by the sampling but also by the aerosolization and the aerosol transport) was 20% for Influenza virus and 89% for Vaccinia virus. The new sampling method was found feasible for the collection and enumeration of robust airborne viruses.
    View less >
    Journal Title
    Journal of Aerosol Science
    Volume
    36
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/337/description#description
    Copyright Statement
    © 2005 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links.
    Subject
    Physical chemistry
    Atmospheric sciences
    Chemical engineering
    Publication URI
    http://hdl.handle.net/10072/4289
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander