• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Using 13C nuclear magnetic resonance spectroscopy for the study of northern hardwood tissues

    Thumbnail
    View/Open
    32276_1.pdf (2.684Mb)
    Author(s)
    Johnson, CE
    Smernik, R
    Siccama, TG
    Kiemle, DK
    Xu, ZH
    Vogt, DJ
    Griffith University Author(s)
    Xu, Zhihong
    Johnson, Chris E.
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Nuclear magnetic resonance (NMR) spectroscopy is a useful tool for examining the structural chemistry of natural organic matter. The use of cross-polarization and magic-angle spinning to study 13C functionality (CPMAS 13C NMR) is convenient, but not always quantitative. We used various 13C NMR techniques to examine the structural chemistry of bark and wood of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and yellow birch (Betula alleghaniensis Britt.). Spin counting experiments showed that 87%-97% of the 13C in the samples was observable by CPMAS 13C NMR. A comparison of CPMAS and Bloch decay ...
    View more >
    Nuclear magnetic resonance (NMR) spectroscopy is a useful tool for examining the structural chemistry of natural organic matter. The use of cross-polarization and magic-angle spinning to study 13C functionality (CPMAS 13C NMR) is convenient, but not always quantitative. We used various 13C NMR techniques to examine the structural chemistry of bark and wood of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and yellow birch (Betula alleghaniensis Britt.). Spin counting experiments showed that 87%-97% of the 13C in the samples was observable by CPMAS 13C NMR. A comparison of CPMAS and Bloch decay experiments revealed few differences in spectral properties. Together, these results suggest that CPMAS 13C NMR is quantitative for these tissues. We observed little variation in the structural chemistry of wood, either among samples of the same species or among species. Within-species variations in bark chemistry were greater than in wood, probably because of variations in environmental conditions. However, we observed no significant differences in bark chemistry among the species. Bark and wood chemistry differed significantly, with the bark spectra displaying greater contributions from lignin, suberin, waxes, and resins. Hardwood spectra differ from softwood spectra in the aromatic C regions because of the contribution of syringyl units to hardwood lignin. Hardwood bark appears to contain less tannins than softwood bark. Together, the quantitative and qualitative features of CPMAS 13C NMR spectra are useful for studying the ecology of living and detrital wood and bark.
    View less >
    Journal Title
    Canadian Journal of Forest Research
    Volume
    35
    DOI
    https://doi.org/10.1139/x05-122
    Copyright Statement
    © 2005 NRC Research Press. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Earth Sciences
    Environmental Sciences
    Agricultural and Veterinary Sciences
    Publication URI
    http://hdl.handle.net/10072/4314
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander