High resolution provenancing of long travelled dust deposited in the Southern Alps, New Zealand
Author(s)
McGowan, HA
Kamber, B
McTainsh, GH
Marx, SK
Griffith University Author(s)
Year published
2005
Metadata
Show full item recordAbstract
On 7 February 2000 an atypical orange discolouration of snowfields in the central Southern Alps, New Zealand occurred following the passage of a cold front. Analysis of snow samples identified fine orangey-brown dust mixed with much coarser grey dust. Air parcel forward trajectories from dust sources in southern and central Australia, where dust storms were reported on 4 February 2000, were computed to identify the deposits source. Geochemical analyses of the dust deposit using 26 trace elements, unaffected by regional air pollution and gravitational sorting, indicate that 20% of the dust was sourced from western New South ...
View more >On 7 February 2000 an atypical orange discolouration of snowfields in the central Southern Alps, New Zealand occurred following the passage of a cold front. Analysis of snow samples identified fine orangey-brown dust mixed with much coarser grey dust. Air parcel forward trajectories from dust sources in southern and central Australia, where dust storms were reported on 4 February 2000, were computed to identify the deposits source. Geochemical analyses of the dust deposit using 26 trace elements, unaffected by regional air pollution and gravitational sorting, indicate that 20% of the dust was sourced from western New South Wales, with 45% from the eastern Eyre Peninsula of South Australia and the remaining 35% was local New Zealand dust. This provenancing approach provides a spatial resolution of long travelled dust sourcing not previously achieved.
View less >
View more >On 7 February 2000 an atypical orange discolouration of snowfields in the central Southern Alps, New Zealand occurred following the passage of a cold front. Analysis of snow samples identified fine orangey-brown dust mixed with much coarser grey dust. Air parcel forward trajectories from dust sources in southern and central Australia, where dust storms were reported on 4 February 2000, were computed to identify the deposits source. Geochemical analyses of the dust deposit using 26 trace elements, unaffected by regional air pollution and gravitational sorting, indicate that 20% of the dust was sourced from western New South Wales, with 45% from the eastern Eyre Peninsula of South Australia and the remaining 35% was local New Zealand dust. This provenancing approach provides a spatial resolution of long travelled dust sourcing not previously achieved.
View less >
Journal Title
Geomorphology
Volume
69
Publisher URI
Subject
Geology
Physical geography and environmental geoscience