• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils

    Author(s)
    Tu, Chen
    Teng, Ying
    Luo, Yongming
    Sun, Xianghui
    Deng, Shaopo
    Li, Zhengao
    Liu, Wuxing
    Xu, Zhihong
    Griffith University Author(s)
    Xu, Zhihong
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Purpose An in situ phytoremediation trial was developed in order to investigate the function of alfalfa during a 2-year bioremediation of an agricultural soil contaminated with polychlorinated biphenyls (PCBs). The study was conducted with the aim to better understand the application potential of PCB phytoremediation at field scale. Materials and methods Two treatments were set up in this field study: (1) soil without planting as a control (CK), and (2) soil planted with alfalfa (P). Kinetics of soil PCB removal during the bioremediation treatment was determined using gas chromatography. Soil enzyme activities ...
    View more >
    Purpose An in situ phytoremediation trial was developed in order to investigate the function of alfalfa during a 2-year bioremediation of an agricultural soil contaminated with polychlorinated biphenyls (PCBs). The study was conducted with the aim to better understand the application potential of PCB phytoremediation at field scale. Materials and methods Two treatments were set up in this field study: (1) soil without planting as a control (CK), and (2) soil planted with alfalfa (P). Kinetics of soil PCB removal during the bioremediation treatment was determined using gas chromatography. Soil enzyme activities including dehydrogenase and fluorescein diacetate (FDA) esterase were detected by spectrophotometry. In addition, soil microbial community structures were investigated by using denaturing gradient gel electrophoresis (DGGE). Results and discussion After the first and second years of remediation, planting alfalfa significantly decreased the initial soil PCB concentrations by 31.4% and 78.4%, respectively. Moreover, the presence of alfalfa significantly increased soil dehydrogenase and FDA esterase activities during the remediation. Changes in soil bacterial community structure and diversity were observed by PCR-DGGE fingerprinting. Planting alfalfa significantly increased soil bacterial diversity. Some well-known PCB-degrading bacteria such as Chloroflexi sp. may have contributed to the rhizoremediation of PCBs. Conclusions Results of this field study suggest that alfalfa is a promising candidate for phytoremediation of PCBcontaminated agricultural soil.
    View less >
    Journal Title
    Journal of Soils and Sediments
    Volume
    11
    Issue
    4
    DOI
    https://doi.org/10.1007/s11368-011-0344-5
    Subject
    Carbon Sequestration Science
    Earth Sciences
    Environmental Sciences
    Agricultural and Veterinary Sciences
    Publication URI
    http://hdl.handle.net/10072/43231
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander