• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Potential decoupling of trends in distribution area and population size of species with climate change

    Author(s)
    Shoo, Lucas
    E. Williams, Stephen
    Hero, Jean-Marc
    Griffith University Author(s)
    Hero, Jean-Marc
    Shoo, Lucas
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Global climates are changing rapidly and biological responses are becoming increasingly apparent. Here, we use empirical abundance patterns across an altitudinal gradient and predicted altitudinal range shifts to estimate change in total population size relative to distribution area in response to climate warming. Adopting this approach we predict that, for nine out of 12 species of regionally endemic birds, total population size will decline more rapidly than distribution area with increasing temperature. Two species showed comparable loss and one species exhibited a slower decline in population size with change in distribution ...
    View more >
    Global climates are changing rapidly and biological responses are becoming increasingly apparent. Here, we use empirical abundance patterns across an altitudinal gradient and predicted altitudinal range shifts to estimate change in total population size relative to distribution area in response to climate warming. Adopting this approach we predict that, for nine out of 12 species of regionally endemic birds, total population size will decline more rapidly than distribution area with increasing temperature. Two species showed comparable loss and one species exhibited a slower decline in population size with change in distribution area. Population size change relative to distribution area was greatest for those species that occurred at highest density in the middle of the gradient. The disproportional loss in population size reported here suggests that extinction risk associated with climate change can be more severe than that expected from decline in distribution area alone. Therefore, if we are to make accurate predictions of the impacts of climate change on the conservation status of individual species, it is crucial that we consider the spatial patterns of abundance within the distribution and not just the overall range of the species.
    View less >
    Journal Title
    Global Change Biology
    Volume
    11
    Issue
    9
    DOI
    https://doi.org/10.1111/j.1365-2486.2005.00995.x
    Subject
    Environmental sciences
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/4340
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander