• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • On the Entropy of Relaxing Deterministic Systems

    Author(s)
    Evans, Denis J.
    Williams, Stephen R.
    Bernhardt, Debra
    Griffith University Author(s)
    Bernhardt, Debra J.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    In this paper, we re-visit Gibbs' second (unresolved) paradox, namely the constancy of the fine-grained Gibbs entropy for autonomous Hamiltonian systems. We compare and contrast the different roles played by dissipation and entropy both at equilibrium where dissipation is identically zero and away from equilibrium where entropy cannot be defined and seems unnecessary in any case. Away from equilibrium dissipation is a powerful quantity that can always be defined and that appears as the central argument of numerous exact theorems: the fluctuation, relaxation, and dissipation theorems and the newly derived Clausius inequality.In this paper, we re-visit Gibbs' second (unresolved) paradox, namely the constancy of the fine-grained Gibbs entropy for autonomous Hamiltonian systems. We compare and contrast the different roles played by dissipation and entropy both at equilibrium where dissipation is identically zero and away from equilibrium where entropy cannot be defined and seems unnecessary in any case. Away from equilibrium dissipation is a powerful quantity that can always be defined and that appears as the central argument of numerous exact theorems: the fluctuation, relaxation, and dissipation theorems and the newly derived Clausius inequality.
    View less >
    Journal Title
    The Journal of Chemical Physics
    Volume
    135
    DOI
    https://doi.org/10.1063/1.3660203
    Subject
    Physical sciences
    Thermodynamics and statistical physics
    Chemical sciences
    Transport properties and non-equilibrium processes
    Statistical mechanics in chemistry
    Engineering
    Publication URI
    http://hdl.handle.net/10072/43501
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander