Does a sensory processing deficit explain counting accuracy on rapid visual sequencing tasks in adults with and without dyslexia?
Author(s)
Conlon, Elizabeth G
Wright, Craig M
Norris, Karla
Chekaluk, Eugene
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
The experiments conducted aimed to investigate whether reduced accuracy when counting stimuli presented in rapid temporal sequence in adults with dyslexia could be explained by a sensory processing deficit, a general slowing in processing speed or difficulties shifting attention between stimuli. To achieve these aims, the influence of the inter-stimulus interval (ISI), stimulus duration, and sequence length were evaluated in two experiments. In the first that used skilled readers only, significantly more errors were found with presentation of long sequences when the ISI or stimulus durations were short. Experiment 2 used a ...
View more >The experiments conducted aimed to investigate whether reduced accuracy when counting stimuli presented in rapid temporal sequence in adults with dyslexia could be explained by a sensory processing deficit, a general slowing in processing speed or difficulties shifting attention between stimuli. To achieve these aims, the influence of the inter-stimulus interval (ISI), stimulus duration, and sequence length were evaluated in two experiments. In the first that used skilled readers only, significantly more errors were found with presentation of long sequences when the ISI or stimulus durations were short. Experiment 2 used a wider range of ISIs and stimulus durations. Compared to skilled readers, a group with dyslexia had reduced accuracy on two-stimulus sequences when the ISI was short, but not when the ISI was long. Although reduced accuracy was found on all short and long sequences by the group with dyslexia, when performance on two-stimulus sequences was used as an index of sensory processing efficiency and controlled, group differences were found with presentation of stimuli of short duration only. We concluded that continuous, repetitive stimulation to the same visual area can produce a capacity limitation on rapid counting tasks in all readers when the ISIs or stimulus durations are short. While reduced accuracy on rapid sequential counting tasks can be explained by a sensory processing deficit when the stimulus duration is long, slower processing speed in the group with dyslexia explains the greater inaccuracy found as sequence length is increased when the stimulus duration is short.
View less >
View more >The experiments conducted aimed to investigate whether reduced accuracy when counting stimuli presented in rapid temporal sequence in adults with dyslexia could be explained by a sensory processing deficit, a general slowing in processing speed or difficulties shifting attention between stimuli. To achieve these aims, the influence of the inter-stimulus interval (ISI), stimulus duration, and sequence length were evaluated in two experiments. In the first that used skilled readers only, significantly more errors were found with presentation of long sequences when the ISI or stimulus durations were short. Experiment 2 used a wider range of ISIs and stimulus durations. Compared to skilled readers, a group with dyslexia had reduced accuracy on two-stimulus sequences when the ISI was short, but not when the ISI was long. Although reduced accuracy was found on all short and long sequences by the group with dyslexia, when performance on two-stimulus sequences was used as an index of sensory processing efficiency and controlled, group differences were found with presentation of stimuli of short duration only. We concluded that continuous, repetitive stimulation to the same visual area can produce a capacity limitation on rapid counting tasks in all readers when the ISIs or stimulus durations are short. While reduced accuracy on rapid sequential counting tasks can be explained by a sensory processing deficit when the stimulus duration is long, slower processing speed in the group with dyslexia explains the greater inaccuracy found as sequence length is increased when the stimulus duration is short.
View less >
Journal Title
Brain and Cognition
Volume
76
Issue
1
Subject
Neurosciences
Neurosciences not elsewhere classified
Cognitive and computational psychology