Show simple item record

dc.contributor.authorFolkman, Lukas
dc.contributor.authorPullan, Wayne
dc.contributor.authorStantic, Bela
dc.contributor.editorXiang, Y
dc.contributor.editorCuzzocrea, A
dc.contributor.editorHobbs, M
dc.contributor.editorZhou, W
dc.date.accessioned2012-02-02
dc.date.accessioned2012-03-12T05:41:21Z
dc.date.accessioned2017-03-01T22:21:34Z
dc.date.available2017-03-01T22:21:34Z
dc.date.issued2011
dc.date.modified2012-03-12T05:41:21Z
dc.identifier.isbn978-3-642-24668-5
dc.identifier.issn0302-9743
dc.identifier.refurihttp://anss.org.au/ica3pp11/
dc.identifier.doi10.1007/978-3-642-24669-2_7
dc.identifier.urihttp://hdl.handle.net/10072/43564
dc.description.abstractProteins are one of the most vital macromolecules on the cellular level. In order to understand the function of a protein, its structure needs to be determined. For this purpose, different computational approaches have been introduced. Genetic algorithms can be used to search the vast space of all possible conformations of a protein in order to find its native structure. A framework for design of such algorithms that is both generic, easy to use and performs fast on distributed systems may help further development of genetic algorithm based approaches. We propose such a framework based on a parallel master-slave model which is implemented in C++ and Message Passing Interface. We evaluated its performance on distributed systems with a different number of processors and achieved a linear acceleration in proportion to the number of processing units.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.languageEnglish
dc.publisherSpringer
dc.publisher.placeGermany
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofconferencename11th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP)
dc.relation.ispartofconferencetitleALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PT II
dc.relation.ispartofdatefrom2011-10-24
dc.relation.ispartofdateto2011-10-26
dc.relation.ispartoflocationMelbourne, AUSTRALIA
dc.relation.ispartofpagefrom64
dc.relation.ispartofpagefrom10 pages
dc.relation.ispartofpageto73
dc.relation.ispartofpageto10 pages
dc.relation.ispartofissuePART 2
dc.relation.ispartofvolume7017
dc.rights.retentionY
dc.subject.fieldofresearchNeural, Evolutionary and Fuzzy Computation
dc.subject.fieldofresearchcode080108
dc.titleGeneric Parallel Genetic Algorithm Framework for Protein Optimisation
dc.typeConference output
dc.type.descriptionE1 - Conferences
dc.type.codee1
gro.facultyFaculty of Science, Environment, Engineering and Technology
gro.date.issued2011
gro.hasfulltextNo Full Text
gro.griffith.authorStantic, Bela
gro.griffith.authorPullan, Wayne J.
gro.griffith.authorFolkman, Lukas


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Conference outputs
    Contains papers delivered by Griffith authors at national and international conferences.

Show simple item record