Differential evolution for RFID antenna design: A comparison with ant colony optimisation

View/ Open
Author(s)
Montgomery, J
Randall, M
Lewis, A
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
Differential evolution (DE) has been traditionally applied to solving benchmark continuous optimisation functions. To enable it to solve a combinatorially oriented design problem, such as the construction of effective radio frequency identification antennas, requires the development of a suitable encoding of the discrete decision variables in a continuous space. This study introduces an encoding that allows the algorithm to construct antennas of varying complexity and length. The DE algorithm developed is a multiobjective approach that maximises antenna efficiency and minimises resonant frequency. Its results are compared ...
View more >Differential evolution (DE) has been traditionally applied to solving benchmark continuous optimisation functions. To enable it to solve a combinatorially oriented design problem, such as the construction of effective radio frequency identification antennas, requires the development of a suitable encoding of the discrete decision variables in a continuous space. This study introduces an encoding that allows the algorithm to construct antennas of varying complexity and length. The DE algorithm developed is a multiobjective approach that maximises antenna efficiency and minimises resonant frequency. Its results are compared with those generated by a family of ant colony optimisation (ACO) metaheuristics that have formed the standard in this area. Results indicate that DE can work well on this problem and that the proposed solution encoding is suitable. On small antenna grid sizes (hence, smaller solution spaces) DE performs well in comparison to ACO, while as the solution space increases its relative performance decreases. However, as the ACO employs a local search operator that the DE currently does not, there is scope for further improvement to the DE approach.
View less >
View more >Differential evolution (DE) has been traditionally applied to solving benchmark continuous optimisation functions. To enable it to solve a combinatorially oriented design problem, such as the construction of effective radio frequency identification antennas, requires the development of a suitable encoding of the discrete decision variables in a continuous space. This study introduces an encoding that allows the algorithm to construct antennas of varying complexity and length. The DE algorithm developed is a multiobjective approach that maximises antenna efficiency and minimises resonant frequency. Its results are compared with those generated by a family of ant colony optimisation (ACO) metaheuristics that have formed the standard in this area. Results indicate that DE can work well on this problem and that the proposed solution encoding is suitable. On small antenna grid sizes (hence, smaller solution spaces) DE performs well in comparison to ACO, while as the solution space increases its relative performance decreases. However, as the ACO employs a local search operator that the DE currently does not, there is scope for further improvement to the DE approach.
View less >
Conference Title
Genetic and Evolutionary Computation Conference, GECCO'11
Publisher URI
Copyright Statement
© ACM 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in GECCO '11 Proceedings of the 13th annual conference on Genetic and evolutionary computation , ISBN 978-1-4503-0557-0, dx.doi.org/10.1145/2001576.2001669
Subject
Optimisation
Software engineering not elsewhere classified
Antennas and propagation