Fine-scale spatial and temporal variations in diets of the pipefish Stigmatopora nigra within seagrass patches
Author(s)
Smith, TM
Hindell, JS
Jenkins, GP
Connolly, RM
Keough, MJ
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
Diets of the pipefish Stigmatopora nigra were analysed to determine if food availability was causing S. nigra to distribute according to habitat edge effects. Gut analysis found little difference in the diets of S. nigra at the edge and interior of seagrass patches, regardless of time of day or season. Fish diets did, however, vary with seagrass density: S. nigra in denser seagrass consumed more harpacticoid copepods and fewer planktonic copepods. The lack of difference in prey eaten by S. nigra at the edge and interior of patches suggests either that food was not determining S. nigra distribution patterns within patches ...
View more >Diets of the pipefish Stigmatopora nigra were analysed to determine if food availability was causing S. nigra to distribute according to habitat edge effects. Gut analysis found little difference in the diets of S. nigra at the edge and interior of seagrass patches, regardless of time of day or season. Fish diets did, however, vary with seagrass density: S. nigra in denser seagrass consumed more harpacticoid copepods and fewer planktonic copepods. The lack of difference in prey eaten by S. nigra at the edge and interior of patches suggests either that food was not determining S. nigra distribution patterns within patches or that differences in fish densities across patches meant that relative fish-prey densities were similar at edge and interior positions. Alternatively, any edge effects in diet might be masked by gradients in seagrass structure.
View less >
View more >Diets of the pipefish Stigmatopora nigra were analysed to determine if food availability was causing S. nigra to distribute according to habitat edge effects. Gut analysis found little difference in the diets of S. nigra at the edge and interior of seagrass patches, regardless of time of day or season. Fish diets did, however, vary with seagrass density: S. nigra in denser seagrass consumed more harpacticoid copepods and fewer planktonic copepods. The lack of difference in prey eaten by S. nigra at the edge and interior of patches suggests either that food was not determining S. nigra distribution patterns within patches or that differences in fish densities across patches meant that relative fish-prey densities were similar at edge and interior positions. Alternatively, any edge effects in diet might be masked by gradients in seagrass structure.
View less >
Journal Title
Journal of Fish Biology
Volume
78
Issue
6
Subject
Ecology
Marine and estuarine ecology (incl. marine ichthyology)
Zoology
Fisheries sciences
Aquaculture and fisheries stock assessment