Band energy structure calculations and spin effect in zinc-blende semiconductors
Author(s)
Miah, M Idrish
Kityk, IV
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
Band energy structure of the n-doped zinc-blende semiconductor was calculated using norm-conserving pseudopotential and Green function methods. The calculations for the semiconductor with different dopant contents were performed in the presence of external circularly polarized axial and polar dc-field potentials. Changes in the spin density distribution for the clusters with different dopant concentrations and at different lattice temperatures and an enhancement of the spin-polarized delocalization states in the presence of the dc-field potential were observed. The observed photo-induced spin effects were explained within a ...
View more >Band energy structure of the n-doped zinc-blende semiconductor was calculated using norm-conserving pseudopotential and Green function methods. The calculations for the semiconductor with different dopant contents were performed in the presence of external circularly polarized axial and polar dc-field potentials. Changes in the spin density distribution for the clusters with different dopant concentrations and at different lattice temperatures and an enhancement of the spin-polarized delocalization states in the presence of the dc-field potential were observed. The observed photo-induced spin effects were explained within a framework of the band energy model of spin physics of taking into account of the photo-induced electron-phonon anharmonicity. The results are consistent with those obtained in experiments of photospintronics.
View less >
View more >Band energy structure of the n-doped zinc-blende semiconductor was calculated using norm-conserving pseudopotential and Green function methods. The calculations for the semiconductor with different dopant contents were performed in the presence of external circularly polarized axial and polar dc-field potentials. Changes in the spin density distribution for the clusters with different dopant concentrations and at different lattice temperatures and an enhancement of the spin-polarized delocalization states in the presence of the dc-field potential were observed. The observed photo-induced spin effects were explained within a framework of the band energy model of spin physics of taking into account of the photo-induced electron-phonon anharmonicity. The results are consistent with those obtained in experiments of photospintronics.
View less >
Journal Title
Optics Communications
Volume
284
Issue
10-11
Subject
Atomic, molecular and optical physics
Communications engineering