• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Investigating raindrop effects on transport of sediment and non-sorbed chemicals from soil to surface runoff

    Author(s)
    Gao, B
    Walter, MT
    Steenhuis, TS
    Parlange, JY
    Richards, BK
    Hogarth, WL
    Rose, CW
    Griffith University Author(s)
    Rose, Calvin W.
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    A simple modeling and laboratory investigation was carried out to investigate the raindrop effects on both sediment detachment and chemical transport from soil-water into runoff. Solute movement between soil-water and runoff is usually modeled as either a mixing model or as a diffusion-like process, both of which ignore the important roles of raindrop impact on the transport process. We hypothesized a process-based chemical transport model that incorporated both rain-drop induced mixing and diffusion and tested it using a small-scale experiment in which simulated rainfall fell on soil, pre-saturated with chloride (Cl-) laden ...
    View more >
    A simple modeling and laboratory investigation was carried out to investigate the raindrop effects on both sediment detachment and chemical transport from soil-water into runoff. Solute movement between soil-water and runoff is usually modeled as either a mixing model or as a diffusion-like process, both of which ignore the important roles of raindrop impact on the transport process. We hypothesized a process-based chemical transport model that incorporated both rain-drop induced mixing and diffusion and tested it using a small-scale experiment in which simulated rainfall fell on soil, pre-saturated with chloride (Cl-) laden water. We simultaneously observed sediment and Cl- runoff concentrations trends and the evolution of the 'shield' layer composed of relatively heavy particles that resettle after each raindrop-impact. Using recently published and directly measured parameters, the model results generally agreed very well with measured concentrations. The exception was for the early (<5 min) Cl- transport, which was faster than the model predicted, suggesting that an additional process needs to be added to our model. Even with this deficiency, the model developed here described our experimental results better than popular 'mixing-layer' and 'diffusion' models. This study provides a new approach to chemical transport modeling by linking the rain-controlled processes with similar soil erosion processes.
    View less >
    Journal Title
    Journal of Hydrology
    Volume
    308
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/503343/description#description
    DOI
    https://doi.org/10.1016/j.jhydrol.2004.11.007
    Publication URI
    http://hdl.handle.net/10072/4383
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander