• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Comparing deep drainage estimated with transient and steady state assumptions in irrigated vertisols

    Author(s)
    Weaver, TB
    Hulugalle, NR
    Ghadiri, H
    Griffith University Author(s)
    Ghadiri, Hossein
    Weaver, Tim
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Chloride mass balance (steady state or transient state) models are used extensively in Vertisols of Queensland and New South Wales (NSW) in Australia to estimate deep drainage. The aim of this study was to compare deep drainage estimated assuming steady state and transient state conditions with chloride mass balance models in irrigated cotton (Gossypium hirsutum L.)-based farming systems in the lower Namoi Valley of North Western NSW. Drainage was estimated at seven sites, and treatments included rotation crops such as wheat (21-62 mm/year) (Triticum aestivum), sorghum (12-47 mm/year) (Sorghum bicolor) and dolichos (12-21 ...
    View more >
    Chloride mass balance (steady state or transient state) models are used extensively in Vertisols of Queensland and New South Wales (NSW) in Australia to estimate deep drainage. The aim of this study was to compare deep drainage estimated assuming steady state and transient state conditions with chloride mass balance models in irrigated cotton (Gossypium hirsutum L.)-based farming systems in the lower Namoi Valley of North Western NSW. Drainage was estimated at seven sites, and treatments included rotation crops such as wheat (21-62 mm/year) (Triticum aestivum), sorghum (12-47 mm/year) (Sorghum bicolor) and dolichos (12-21 mm/year) (Lablab purpureus), minimum tillage (62-83 mm/year), where cotton was sown into standing wheat stubble, and conventional tillage where stubble was incorporated (35-78 mm/year). Soil water content was measured with a neutron moisture meter in the 0.2-1.2 m depth. Soil was sampled before sowing and after harvest to a depth of 1.2 m along diagonal transects. The soil chloride concentration was determined by titration with AgNO3. Irrigation water was also analysed for chloride. The deep drainage estimates were compared using regression analysis and students paired t-test. In addition, a paired t-test of the soil chloride concentration before sowing and after harvest was used to determine if the soil chloride flux was either in a steady state or transient state. In 9 out of the 13 data sets (69%), drainage estimated with the models agreed with changes between pre- and post-season soil chloride concentrations. Under frequently irrigated summer crops such as cotton and sorghum and in better structured soils chloride flux reached steady state conditions whereas under partially-irrigated crops or where soil structure was poorer, the chloride flux deviated markedly from steady-state conditions. The latter observation may be due to preferential flow via deep cracks in infrequently irrigated soil. Deep cracking would be due to the more intense shrinking and swelling in partially irrigated soil in comparison with frequently-irrigated crops. Comparison of estimated deep drainage with pre- and post-season soil chloride concentrations showed that the steady state mass balance model best estimated deep drainage under cotton crops which were irrigated more frequently or wheat crops which had better soil structure.
    View less >
    Journal Title
    Irrigation Science
    Volume
    23
    Issue
    4
    DOI
    https://doi.org/10.1007/s00271-005-0106-5
    Subject
    Crop and Pasture Production
    Other Agricultural and Veterinary Sciences
    Publication URI
    http://hdl.handle.net/10072/4400
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander