• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Reaction of Trimethylchlorosilane in Spin-On Silicalite-1 Zeolite Film

    Author(s)
    Eslava, Salvador
    Delahaye, Stephane
    Baklanov, Mikhail R.
    Iacopi, Francesca
    Kirschhock, Christine E. A.
    Maex, Karen
    Martens, Johan A.
    Griffith University Author(s)
    Iacopi, Francesca
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    We present a study on the hydrophobization of spin-on Silicalite-1 zeolite films through silylation with trimethylchlorosilane. Microporous and micro-mesoporous Silicalite-1 films were synthesized by spin coating of suspensions of Silicalite-1 nanozeolite crystallized for different times. Ellipsometric porosimetry with toluene and water adsorbates reveals that silylation decreases the porosity and makes the films hydrophobic. The decrease in porosity depends on the exposed surface area in the pores. Water contact angle measurements confirm the hydrophobicity. Fourier transform infrared spectroscopy reveals that the trimethylsilyl ...
    View more >
    We present a study on the hydrophobization of spin-on Silicalite-1 zeolite films through silylation with trimethylchlorosilane. Microporous and micro-mesoporous Silicalite-1 films were synthesized by spin coating of suspensions of Silicalite-1 nanozeolite crystallized for different times. Ellipsometric porosimetry with toluene and water adsorbates reveals that silylation decreases the porosity and makes the films hydrophobic. The decrease in porosity depends on the exposed surface area in the pores. Water contact angle measurements confirm the hydrophobicity. Fourier transform infrared spectroscopy reveals that the trimethylsilyl groups are chemisorbed selectively on isolated silanols and less on geminal and vicinal silanols due to steric limitations. Time-of-flight secondary-ion mass spectroscopy and in situ ellipsometry analysis of the reaction kinetics show that the silylation is a bulk process occurring in the absence of diffusion limitation. Electrical current leakage on films decreases upon silylation. Silylation with trimethylchlorosilane is shown to be an effective hydrophobization method for spin-on Silicalite-1 zeolite films.
    View less >
    Journal Title
    Langmuir
    Volume
    24
    Issue
    9
    DOI
    https://doi.org/10.1021/la800086y
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
    Subject
    Synthesis of Materials
    Publication URI
    http://hdl.handle.net/10072/44071
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander