• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Wave height forecasting in Dayyer, the Persian Gulf

    Thumbnail
    View/Open
    77650_1.pdf (154.1Kb)
    Author(s)
    Kamranzad, B
    Etemad-Shahidi, A
    Kazeminezhad, MH
    Griffith University Author(s)
    Etemad Shahidi, Amir F.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Forecastingofwaveparametersisnecessaryformanymarineandcoastaloperations.Different forecastingmethodologieshavebeendevelopedusingthewindandwavecharacteristics.Inthispaper, artificialneuralnetwork(ANN)asarobustdatalearningmethodisusedtoforecastthewaveheightforthe next 3,6,12and24hinthePersianGulf.Todeterminetheeffectiveparameters,differentmodelswith various combinationsofinputparameterswereconsidered.Parameterssuchaswindspeed,directionand wave heightoftheprevious3h,werefoundtobethebestinputs.Furthermore,usingthedifference between waveandwinddirectionsshowedbetterperformance.Theresultsalsoindicatedthatifonlythe wind ...
    View more >
    Forecastingofwaveparametersisnecessaryformanymarineandcoastaloperations.Different forecastingmethodologieshavebeendevelopedusingthewindandwavecharacteristics.Inthispaper, artificialneuralnetwork(ANN)asarobustdatalearningmethodisusedtoforecastthewaveheightforthe next 3,6,12and24hinthePersianGulf.Todeterminetheeffectiveparameters,differentmodelswith various combinationsofinputparameterswereconsidered.Parameterssuchaswindspeed,directionand wave heightoftheprevious3h,werefoundtobethebestinputs.Furthermore,usingthedifference between waveandwinddirectionsshowedbetterperformance.Theresultsalsoindicatedthatifonlythe wind parametersareusedasmodelinputstheaccuracyoftheforecastingincreasesasthetimehorizon increasesupto6h.Thiscanbeduetothelowerinfluenceofpreviouswaveheightsonlargerleadtime forecastingandtheexistinglagbetweenthewindandwavegrowth.Itwasalsofoundthatinshortlead times, theforecastedwaveheightsprimarilydependonthepreviouswaveheights,whileinlargerlead times thereisagreaterdependenceonpreviouswindspeeds. &
    View less >
    Journal Title
    Ocean Engineering
    Volume
    38
    Issue
    1
    DOI
    https://doi.org/10.1016/j.oceaneng.2010.10.004
    Copyright Statement
    © 2011 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Oceanography
    Civil engineering
    Maritime engineering
    Maritime engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/44215
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander