Wave height forecasting in Dayyer, the Persian Gulf

View/ Open
Author(s)
Kamranzad, B
Etemad-Shahidi, A
Kazeminezhad, MH
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
Forecastingofwaveparametersisnecessaryformanymarineandcoastaloperations.Different forecastingmethodologieshavebeendevelopedusingthewindandwavecharacteristics.Inthispaper, artificialneuralnetwork(ANN)asarobustdatalearningmethodisusedtoforecastthewaveheightforthe next 3,6,12and24hinthePersianGulf.Todeterminetheeffectiveparameters,differentmodelswith various combinationsofinputparameterswereconsidered.Parameterssuchaswindspeed,directionand wave heightoftheprevious3h,werefoundtobethebestinputs.Furthermore,usingthedifference between waveandwinddirectionsshowedbetterperformance.Theresultsalsoindicatedthatifonlythe wind ...
View more >Forecastingofwaveparametersisnecessaryformanymarineandcoastaloperations.Different forecastingmethodologieshavebeendevelopedusingthewindandwavecharacteristics.Inthispaper, artificialneuralnetwork(ANN)asarobustdatalearningmethodisusedtoforecastthewaveheightforthe next 3,6,12and24hinthePersianGulf.Todeterminetheeffectiveparameters,differentmodelswith various combinationsofinputparameterswereconsidered.Parameterssuchaswindspeed,directionand wave heightoftheprevious3h,werefoundtobethebestinputs.Furthermore,usingthedifference between waveandwinddirectionsshowedbetterperformance.Theresultsalsoindicatedthatifonlythe wind parametersareusedasmodelinputstheaccuracyoftheforecastingincreasesasthetimehorizon increasesupto6h.Thiscanbeduetothelowerinfluenceofpreviouswaveheightsonlargerleadtime forecastingandtheexistinglagbetweenthewindandwavegrowth.Itwasalsofoundthatinshortlead times, theforecastedwaveheightsprimarilydependonthepreviouswaveheights,whileinlargerlead times thereisagreaterdependenceonpreviouswindspeeds. &
View less >
View more >Forecastingofwaveparametersisnecessaryformanymarineandcoastaloperations.Different forecastingmethodologieshavebeendevelopedusingthewindandwavecharacteristics.Inthispaper, artificialneuralnetwork(ANN)asarobustdatalearningmethodisusedtoforecastthewaveheightforthe next 3,6,12and24hinthePersianGulf.Todeterminetheeffectiveparameters,differentmodelswith various combinationsofinputparameterswereconsidered.Parameterssuchaswindspeed,directionand wave heightoftheprevious3h,werefoundtobethebestinputs.Furthermore,usingthedifference between waveandwinddirectionsshowedbetterperformance.Theresultsalsoindicatedthatifonlythe wind parametersareusedasmodelinputstheaccuracyoftheforecastingincreasesasthetimehorizon increasesupto6h.Thiscanbeduetothelowerinfluenceofpreviouswaveheightsonlargerleadtime forecastingandtheexistinglagbetweenthewindandwavegrowth.Itwasalsofoundthatinshortlead times, theforecastedwaveheightsprimarilydependonthepreviouswaveheights,whileinlargerlead times thereisagreaterdependenceonpreviouswindspeeds. &
View less >
Journal Title
Ocean Engineering
Volume
38
Issue
1
Copyright Statement
© 2011 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Oceanography
Civil engineering
Maritime engineering
Maritime engineering not elsewhere classified