• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cost-effectiveness of leaf energy and resource investment of invasive Berberis thunbergii and co-occurring native shrubs

    Thumbnail
    View/Open
    77683_1.pdf (5.351Mb)
    Author
    Boyd, Jennifer Nagel
    Xu, Cheng-Yuan
    L. Griffin, Kevin
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Photosynthetic energy gain and biomass energy and resource investment represent trade-offs between potential enhancements and limitations to plant productivity, respectively. We compared these characteristics in the exotic invasive Berberis thunbergii DC. with that of co-occurring natives Kalmia latifolia L. and Vaccinium corymbosum L. in a northeastern United States forest. We hypothesized that invasion by B. thunbergii could be facilitated by a lower leaf construction cost (CC) and reduced leaf nitrogen content (N) relative to photosynthetic rate (A) and maximum photosynthetic capacity (Amax), which would afford it greater ...
    View more >
    Photosynthetic energy gain and biomass energy and resource investment represent trade-offs between potential enhancements and limitations to plant productivity, respectively. We compared these characteristics in the exotic invasive Berberis thunbergii DC. with that of co-occurring natives Kalmia latifolia L. and Vaccinium corymbosum L. in a northeastern United States forest. We hypothesized that invasion by B. thunbergii could be facilitated by a lower leaf construction cost (CC) and reduced leaf nitrogen content (N) relative to photosynthetic rate (A) and maximum photosynthetic capacity (Amax), which would afford it greater energy-use efficiency (EUE) and nitrogen-use efficiency (NUE), and maximums of these variables (EUEmax and NUEmax), compared with native shrubs. Although B. thunbergii and K. latifolia exhibited similar peak-season A and Amax, EUE, EUEmax, and NUEmax were greater in B. thunbergii, which exhibited lower leaf CC and density. In contrast, EUE, EUEmax, NUE, and NUEmax did not differ between B. thunbergii and V. corymbosum given their similar A, Amax, and area-based leaf CC and leaf N. Considered with leaf phenology, our results suggest two distinct physiological mechanisms could influence B. thunbergii invasion. Specifically, deciduous B. thunbergii exhibited greater cost-effectiveness than evergreen K. latifolia, while a longer payback time for photosynthetic energy gain could offset instantaneous similarities in cost-effectiveness of earlier leafing B. thunbergii and deciduous V. corymbosum.
    View less >
    Journal Title
    Canadian Journal of Forest Research
    Volume
    39
    Issue
    11
    DOI
    https://doi.org/10.1139/X09-128
    Copyright Statement
    © 2009 NRC Research Press. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Forestry Sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/44259
    Collection
    • Journal articles

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia