• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Tunable Two-Dimensional Array Patterning of Antibody Annuli through Microsphere Templating

    Author(s)
    Wolf, Cornel
    Li, Qin
    Griffith University Author(s)
    Li, Qin
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Protein microarrays are of great research interest because of their potential application as biosensors for highthroughput protein and pathogen screening technologies. In this active area, there is a lack of techniques that can result in annulus-shaped protein structures (e.g., for the utilization of curved surfaces for enhanced protein-protein interactions and the detection of antigens). We present a new technique employing colloidal templating to yield large-scale (~cm2) 2D arrays of antibodies against Escherichia coli K12 and enhanced green fluorescent protein (eGFP) on a versatile glass surface. The antibodies are swept ...
    View more >
    Protein microarrays are of great research interest because of their potential application as biosensors for highthroughput protein and pathogen screening technologies. In this active area, there is a lack of techniques that can result in annulus-shaped protein structures (e.g., for the utilization of curved surfaces for enhanced protein-protein interactions and the detection of antigens). We present a new technique employing colloidal templating to yield large-scale (~cm2) 2D arrays of antibodies against Escherichia coli K12 and enhanced green fluorescent protein (eGFP) on a versatile glass surface. The antibodies are swept to reside around the templating microspheres during solution drying and physically adsorb onto the glass. After the microspheres are removed, an array of annulus-shaped antibody structures is formed. Wedemonstrate the preserved antibody structure and functionality by binding the specific antigens and secondary antibodies, respectively, which paves the way for the binding of biomolecules and pathogens such as bacteria and viruses. The structures were investigated via atomic force, confocal, and fluorescence microscopy. Operational factors such as the drying time, temperature, and humidity as well as the presence of surfactants in the antibody solution were tuned to obtain a stable antibody structure.
    View less >
    Journal Title
    Langmuir: the A C S journal of surfaces and colloids
    Volume
    26
    Issue
    14
    DOI
    https://doi.org/10.1021/la101212y
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
    Subject
    Chemical Engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/44315
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander