• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development and Analysis of a Sliding Tactile Soft Fingertip Embedded With a Microforce/Moment Sensor

    Author(s)
    Anh Ho, Van
    Viet Dao, Dzung
    Sugiyama, Susumu
    Hirai, Shinichi
    Griffith University Author(s)
    Dao, Dzung V.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    We describe the development of a tactile hemispherical soft fingertip (FT) of a size similar to that of a human thumb. The sensory core consists of a microscaled force/torque sensor that can output one component of force and two components ofmoment simultaneously, which was developed beforehand. This sensor is embedded in a polyurethane rubber hemispherical dome to form a complete soft, compliant, and perceptible robotic FT. This system is designed for easy fabrication, high reliability in outputting signals, and stable operation. Static and dynamic mathematical analyses were utilized to investigate the responses of the ...
    View more >
    We describe the development of a tactile hemispherical soft fingertip (FT) of a size similar to that of a human thumb. The sensory core consists of a microscaled force/torque sensor that can output one component of force and two components ofmoment simultaneously, which was developed beforehand. This sensor is embedded in a polyurethane rubber hemispherical dome to form a complete soft, compliant, and perceptible robotic FT. This system is designed for easy fabrication, high reliability in outputting signals, and stable operation. Static and dynamic mathematical analyses were utilized to investigate the responses of the sensor during the typical sliding motion of an FT. This was followed by experiments to show its potential in tactile and texture recognition. Especially, incipient-slip detection, which is critical in graspingmanipulations, can be assessed properly and in a timely way. The development of this tactile FT is considered significant in the field of dexterous manipulation.
    View less >
    Journal Title
    IEEE Transactions on Robotics
    Volume
    27
    Issue
    3
    DOI
    https://doi.org/10.1109/TRO.2010.2103470
    Subject
    Mechanical engineering
    Engineering practice and education not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/44350
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander