• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The (Embodied) Performance of Physics Concepts in Lectures

    Author(s)
    Hwang, SungWon
    Roth, Wolff-Michael
    Griffith University Author(s)
    Roth, Michael
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Lectures are often thought of in terms of information transfer: students (do not) "get" or "construct meaning of" what physics professors (lecturers) say and the notes they put on the chalkboard (overhead). But this information transfer view does not explain, for example, why students have a clear sense of understanding while they sit in a lecture and their subsequent experiences of failure to understand their own lecture notes or textbooks while preparing for an exam. Based on a decade of studies on the embodied nature of science lectures, the purpose of this article is to articulate and exemplify a different way of ...
    View more >
    Lectures are often thought of in terms of information transfer: students (do not) "get" or "construct meaning of" what physics professors (lecturers) say and the notes they put on the chalkboard (overhead). But this information transfer view does not explain, for example, why students have a clear sense of understanding while they sit in a lecture and their subsequent experiences of failure to understand their own lecture notes or textbooks while preparing for an exam. Based on a decade of studies on the embodied nature of science lectures, the purpose of this article is to articulate and exemplify a different way of understanding physics lectures. We exhibit how there is more to lectures than the talk plus notes. This informational "more" may explain (part of) the gap between students' participative understanding that exists in the situation where they sit in the lecture on the one hand and the one where they study for an exam from their lecture notes on the other. Our results suggest that in lectures, concepts are heterogeneous performances in which meaning is synonymous with the synergistic and irreducible transactions of many different communicative modes, including gestures, body movements, body positions, prosody, and so forth.
    View less >
    Journal Title
    Research in Science Education
    Volume
    41
    Issue
    4
    DOI
    https://doi.org/10.1007/s11165-010-9175-4
    Subject
    Science, Technology and Engineering Curriculum and Pedagogy
    Curriculum and Pedagogy
    Specialist Studies in Education
    Publication URI
    http://hdl.handle.net/10072/44425
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander