Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states
Author(s)
Chrzanowski, H.
Bernu, J.
Sparkes, B.
Hage, B.
Lund, Austin
Ralph, T.
Lam, P.
Symul, T.
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
The nonlinearity of a conditional photon-counting measurement can be used to "de-Gaussify" a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility ...
View more >The nonlinearity of a conditional photon-counting measurement can be used to "de-Gaussify" a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.
View less >
View more >The nonlinearity of a conditional photon-counting measurement can be used to "de-Gaussify" a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.
View less >
Journal Title
Physical Review A: Atomic, Molecular and Optical Physics
Volume
84
Issue
5
Subject
Optical Physics not elsewhere classified
Mathematical Sciences
Physical Sciences
Chemical Sciences