• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Multimodule Micro Transportation System Based on Electrostatic Comb-Drive Actuator and Ratchet Mechanism

    Author(s)
    Dzung, Viet Dao
    Phuc, Hong Pham
    Sugiyama, Susumu
    Griffith University Author(s)
    Dao, Dzung V.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    We present a novel multimodule micro transportation system (MTS), which can drive micro containers in straight, curved, and T-junction paths based on electrostatic comb-drive actuator and ratchet mechanism. The transported objects are micro containers, which have two pairs of driving wings and anti-reverse wings attached to a body. Their movement is like a water strider, i.e., its driving wings rotate backward to generate reaction force to push the containers forward, while the anti-reverse wings act as a ratchet mechanism to prevent the container from moving backward. By developing three basic modules, i.e., straight, ...
    View more >
    We present a novel multimodule micro transportation system (MTS), which can drive micro containers in straight, curved, and T-junction paths based on electrostatic comb-drive actuator and ratchet mechanism. The transported objects are micro containers, which have two pairs of driving wings and anti-reverse wings attached to a body. Their movement is like a water strider, i.e., its driving wings rotate backward to generate reaction force to push the containers forward, while the anti-reverse wings act as a ratchet mechanism to prevent the container from moving backward. By developing three basic modules, i.e., straight, turning, and T-junction modules, the different configurations of the MTS can be built from these modules conveniently. Each module consists of ratchet racks driven by electrostatic comb-drive actuators. Containers having length, width, and thickness of 500, 250, and 30 孬 respectively, were driven to move with a changeable velocity up to 1000 孯sec in straight, turning, and T-junction modules. The velocity of the container was proportional to the frequency of driving voltage. By utilizing silicon micromachining technology, a prototype of MTS was fabricated from silicon-on-insulator wafer with only one mask.
    View less >
    Journal Title
    Journal of Microelectromechanical Systems
    Volume
    20
    Issue
    1
    DOI
    https://doi.org/10.1109/JMEMS.2010.2090503
    Subject
    Manufacturing engineering
    Mechanical engineering
    Engineering practice and education not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/44441
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander