• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Synthesis of pyramidal, cubical and truncated octahedral magnetite nanocrystals by controlling reaction heating rate

    Author(s)
    Zhang, Ling
    Li, Qin
    Liu, Shaomin
    Ang, Ming
    Tade, Moses O
    Gu, Hong-Chen
    Griffith University Author(s)
    Li, Qin
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Pyramidal, cubical and truncated octahedral magnetite nanocrystals have been synthesized by thermal de-composition of iron (III) acetylacetone (Fe(acac)3) in the presence of oleic acid under various reaction rate controlled by heating rate. The magnetite nanocrystals were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). High-resolution transmission electron microscopy (HRTEM) was applied to reveal the structural information of single magnetite (Fe3O4) nanocrystals. Magnetization curves of the three types of magnetite nanocrystals show that the pyramidal crystals exhibit a slight hysteresis ...
    View more >
    Pyramidal, cubical and truncated octahedral magnetite nanocrystals have been synthesized by thermal de-composition of iron (III) acetylacetone (Fe(acac)3) in the presence of oleic acid under various reaction rate controlled by heating rate. The magnetite nanocrystals were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). High-resolution transmission electron microscopy (HRTEM) was applied to reveal the structural information of single magnetite (Fe3O4) nanocrystals. Magnetization curves of the three types of magnetite nanocrystals show that the pyramidal crystals exhibit a slight hysteresis compared to the other two despite of the similar size range. The results suggest that in addition to the surfactant selective capping and varying reaction temperature, the reaction rate variation is also an effective means for controlling the morphology and functions of the magnetite nanocrystals.
    View less >
    Journal Title
    Advanced Powder Technology
    Volume
    22
    Issue
    4
    DOI
    https://doi.org/10.1016/j.apt.2010.07.014
    Subject
    Colloid and surface chemistry
    Chemical engineering
    Powder and particle technology
    Chemical engineering not elsewhere classified
    Mechanical engineering
    Resources engineering and extractive metallurgy
    Publication URI
    http://hdl.handle.net/10072/44621
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander