• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Improving Reliability of Markov-based Bridge Deterioration Model using Artificial Neural Network

    Thumbnail
    View/Open
    77359_1.pdf (223.6Kb)
    Author(s)
    Bu, Guoping
    Lee, Jaeho
    Guan, Hong
    Blumenstein, Michael
    Loo, Yew-Chaye
    Griffith University Author(s)
    Loo, Yew-Chaye
    Blumenstein, Michael M.
    Guan, Hong
    Lee, Jaeho
    Bu, Guoping
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Forecasting long-term performance of bridge by deterioration model is a crucial component in a Bridge Management System (BMS). Markovian-based models are one of the most typical methods to predict long-term bridge performance. The Markovian-based model is selected for predicting bridge deterioration, because it is the most widely accepted prediction model and has been adopted by most State-of-the-Art BMSs. The Markovian-based model is based on transition matrix obtained from overall condition rating of bridges in a network. The change in condition ratings with time provides typical deterioration rates, which can normally be ...
    View more >
    Forecasting long-term performance of bridge by deterioration model is a crucial component in a Bridge Management System (BMS). Markovian-based models are one of the most typical methods to predict long-term bridge performance. The Markovian-based model is selected for predicting bridge deterioration, because it is the most widely accepted prediction model and has been adopted by most State-of-the-Art BMSs. The Markovian-based model is based on transition matrix obtained from overall condition rating of bridges in a network. The change in condition ratings with time provides typical deterioration rates, which can normally be determined from a non-linear regression analysis. Reliable regression analysis requires either large bridge network or sufficient historical condition ratings to obtain accurate transition probability for bridges. Markovian-based model prediction is a simple way to forecast long term performance of individual bridge. However, most bridge agencies do not have adequate condition rating records. This has become a major shortcoming in deterioration modelling. To minimise the abovementioned problem, this paper presents modified Markovian method using previously developed BPM. The BPM is able to generate missing historical condition ratings thereby providing more historical trend of condition depreciation. In this study, BPM-generated condition ratings are used for regression analysis to obtain reliable transition probability required by the Markovian-based model. The results of the proposed study are compared with those of a typical Markovian-based model to identify the advantage of BPM and limitations for further development.
    View less >
    Conference Title
    IABSE-IASS 2011 Symposium - Taller, Longer, Lighter
    Publisher URI
    http://www.iabse.org/
    Copyright Statement
    © 2011 IASBE. The attached file is posted here in accordance with the copyright policy of the publisher, for your personal use only. No further distribution permitted. Use hypertext link for access to conference website.
    Subject
    Infrastructure Engineering and Asset Management
    Publication URI
    http://hdl.handle.net/10072/44700
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander