• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A numerical study on the role of geometry confinement and fluid flow in colloidal self-assembly

    Author(s)
    Fang, Hongfei
    Tade, Moses O
    Li, Qin
    Griffith University Author(s)
    Li, Qin
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    As a strategy of autonomously organising nanoparticles into patterns or structures, colloidal self-assembly has attracted significant interests in both fundamental research and applied science. Discrete element method (DEM) coupled with a simplified fluid flow model is applied to investigate convective colloidal self-assembly. The model developed takes into account the interparticle interactions, i.e. the electrostatic repulsion, van der Waals attraction, Brownian motions, and the hydrodynamic effect. Therefore, a detailed insight of the combined influences of fluid flow field, geometrical confinement, and the interparticle ...
    View more >
    As a strategy of autonomously organising nanoparticles into patterns or structures, colloidal self-assembly has attracted significant interests in both fundamental research and applied science. Discrete element method (DEM) coupled with a simplified fluid flow model is applied to investigate convective colloidal self-assembly. The model developed takes into account the interparticle interactions, i.e. the electrostatic repulsion, van der Waals attraction, Brownian motions, and the hydrodynamic effect. Therefore, a detailed insight of the combined influences of fluid flow field, geometrical confinement, and the interparticle interactions on the self-assembly process can be obtained. In this study, we simulated different self-assembled structures and various transition areas where a growing crystal transits from n to n + 1 layer as a function of varied 3 phase contact angle, which is represented by a wedge geometry, and the velocity and direction of fluid flow. The crystal defects and the formation mechanism of different defects are theoretically studied through numerical simulation.
    View less >
    Journal Title
    Powder Technology
    Volume
    214
    Issue
    3
    DOI
    https://doi.org/10.1016/j.powtec.2011.08.023
    Subject
    Chemical engineering
    Chemical engineering not elsewhere classified
    Mechanical engineering
    Resources engineering and extractive metallurgy
    Publication URI
    http://hdl.handle.net/10072/44768
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander