• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Soil erodibility dynamics and its representation for wind erosion and dust emission models

    Author(s)
    P. Webb, Nicholas
    Strong, Craig
    Griffith University Author(s)
    Strong, Craig
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    The susceptibility of a land surface to wind erosion is highly sensitive to changes in soil erodibility. Nonetheless, the performance of wind erosion models continues to be affected by the accuracy of their erodibility representations. There is thus an ongoing need for robust approaches for assessing and modelling soil erodibility dynamics. This paper provides a critical review of research into the controls on soil erodibility dynamics. The review focuses on progress in understanding temporal changes in soil aggregation and crusting as they influence the erodibility of agricultural and rangeland soils, and identifies ...
    View more >
    The susceptibility of a land surface to wind erosion is highly sensitive to changes in soil erodibility. Nonetheless, the performance of wind erosion models continues to be affected by the accuracy of their erodibility representations. There is thus an ongoing need for robust approaches for assessing and modelling soil erodibility dynamics. This paper provides a critical review of research into the controls on soil erodibility dynamics. The review focuses on progress in understanding temporal changes in soil aggregation and crusting as they influence the erodibility of agricultural and rangeland soils, and identifies deficiencies in approaches for resolving the nature and causes of spatio-temporal patterns of erodibility change. A conceptual model of soil erodibility dynamics is developed to represent erodibility changes within a single erodibility continuum. The model is used to identify ongoing research questions that are central to developing new measures and a deeper understanding of soil erodibility dynamics, and representations of soil erodibility for wind erosion and dust emission models. Finally, available soil erodibility metrics are evaluated in the context of their application in addressing these research needs, and new and alternate approaches for reducing the complexity of soil erodibility assessments and models are identified.
    View less >
    Journal Title
    Aeolian Research
    Volume
    3
    Issue
    2
    DOI
    https://doi.org/10.1016/j.aeolia.2011.03.002
    Subject
    Atmospheric Sciences not elsewhere classified
    Earth Sciences
    Environmental Sciences
    Publication URI
    http://hdl.handle.net/10072/45408
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander