• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dietary Copper and the Brain

    Author(s)
    Antony, Helma
    G. Macreadie, Ian
    Griffith University Author(s)
    Antony, Helma
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Copper is an essential trace element. It is a component of a number of enzymes involved in functions that are vital for cells. Without copper, cell growth and survival are not maintained. Copper's importance applies not only to human health, but to all of life; it is absolutely required for all cells. Conversely, excess copper is toxic and can lead to serious disorders in many organs of the body, including the brain. Therefore, a safe and adequate dietary intake of copper together with tight regulation of cellular levels is necessary to maintain good health. This chapter reviews the biological role of dietary copper in humans, ...
    View more >
    Copper is an essential trace element. It is a component of a number of enzymes involved in functions that are vital for cells. Without copper, cell growth and survival are not maintained. Copper's importance applies not only to human health, but to all of life; it is absolutely required for all cells. Conversely, excess copper is toxic and can lead to serious disorders in many organs of the body, including the brain. Therefore, a safe and adequate dietary intake of copper together with tight regulation of cellular levels is necessary to maintain good health. This chapter reviews the biological role of dietary copper in humans, the innate strategies to achieve copper homeostasis and the diseases associated with copper metabolism. Studies in yeast, a model organism, have helped to define how the cell manages copper, from its reduction to a biologically useful form, to its transport and delivery to locations in mitochondria, the Golgi apparatus, endosomes, etc., to the sequestration and efflux of copper when it is in excess. Special emphasis is given to the effects of copper in the brain. Brain copper levels alter with age and some of these alterations have been implicated with various neurodegenerative diseases, especially Alzheimer's disease. Some of the evidence linking altered copper levels with acute and progressive diseases is presented.
    View less >
    Book Title
    Handbook of Behavior, Food and Nutrition
    Volume
    4
    DOI
    https://doi.org/10.1007/978-0-387-92271-3_150
    Subject
    Neurosciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/45463
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander