Show simple item record

dc.contributor.authorAndersson, Erikaen_US
dc.contributor.authorD. Cresser, Jamesen_US
dc.contributor.authorJ.W. Hall, Michaelen_US
dc.date.accessioned2017-04-24T13:44:45Z
dc.date.available2017-04-24T13:44:45Z
dc.date.issued2007en_US
dc.date.modified2012-07-27T03:10:03Z
dc.identifier.issn09500340en_US
dc.identifier.doi10.1080/09500340701352581en_US
dc.identifier.urihttp://hdl.handle.net/10072/46021
dc.description.abstractFor any master equation which is local in time, whether Markovian, non-Markovian, of Lindblad form or not, a general procedure is given for constructing the corresponding linear map from the initial state to the state at time t, including its Kraus-type representations. Formally, this is equivalent to solving the master equation. For an N-dimensional Hilbert space it requires (i) solving a first order N 2׎ 2 matrix time evolution (to obtain the completely positive map), and (ii) diagonalizing a related N 2׎ 2 matrix (to obtain a Kraus-type representation). Conversely, for a given time-dependent linear map, a necessary and sufficient condition is given for the existence of a corresponding master equation, where the (not necessarily unique) form of this equation is explicitly determined. It is shown that a "best possible" master equation may always be defined, for approximating the evolution in the case that no exact master equation exists. Examples involving qubits are given.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_US
dc.format.extent192361 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglishen_US
dc.publisherTaylor & Francis Ltd.en_US
dc.publisher.placeUnited Kingdomen_US
dc.relation.ispartofstudentpublicationNen_US
dc.relation.ispartofpagefrom1695en_US
dc.relation.ispartofpageto1716en_US
dc.relation.ispartofissue12en_US
dc.relation.ispartofjournalJournal of Modern Opticsen_US
dc.relation.ispartofvolume54en_US
dc.rights.retentionYen_US
dc.subject.fieldofresearchMathematical Aspects of Classical Mechanics, Quantum Mechanics and Quantum Information Theoryen_US
dc.subject.fieldofresearchQuantum Opticsen_US
dc.subject.fieldofresearchQuantum Physics not elsewhere classifieden_US
dc.subject.fieldofresearchcode010503en_US
dc.subject.fieldofresearchcode020604en_US
dc.subject.fieldofresearchcode020699en_US
dc.titleFinding the Kraus decomposition from a master equation and vice versaen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.rights.copyrightCopyright 2007 Taylor & Francis. This is an electronic version of an article published in Journal of Modern Optics, Vol.54(12), 2007, pp.1695-1716. Journal of Modern Optics is available online at: http://www.tandfonline.com with the open URL of your article.en_US
gro.date.issued2007
gro.hasfulltextFull Text


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record