Show simple item record

dc.contributor.authorAndersson, Erika
dc.contributor.authorCresser, James D
dc.contributor.authorHall, Michael JW
dc.date.accessioned2017-05-03T16:06:08Z
dc.date.available2017-05-03T16:06:08Z
dc.date.issued2007
dc.date.modified2012-07-27T03:10:03Z
dc.identifier.issn0950-0340
dc.identifier.doi10.1080/09500340701352581
dc.identifier.urihttp://hdl.handle.net/10072/46021
dc.description.abstractFor any master equation which is local in time, whether Markovian, non-Markovian, of Lindblad form or not, a general procedure is given for constructing the corresponding linear map from the initial state to the state at time t, including its Kraus-type representations. Formally, this is equivalent to solving the master equation. For an N-dimensional Hilbert space it requires (i) solving a first order N 2׎ 2 matrix time evolution (to obtain the completely positive map), and (ii) diagonalizing a related N 2׎ 2 matrix (to obtain a Kraus-type representation). Conversely, for a given time-dependent linear map, a necessary and sufficient condition is given for the existence of a corresponding master equation, where the (not necessarily unique) form of this equation is explicitly determined. It is shown that a "best possible" master equation may always be defined, for approximating the evolution in the case that no exact master equation exists. Examples involving qubits are given.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.format.extent192361 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.publisherTaylor & Francis Ltd.
dc.publisher.placeUnited Kingdom
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom1695
dc.relation.ispartofpageto1716
dc.relation.ispartofissue12
dc.relation.ispartofjournalJournal of Modern Optics
dc.relation.ispartofvolume54
dc.rights.retentionY
dc.subject.fieldofresearchMathematical Aspects of Classical Mechanics, Quantum Mechanics and Quantum Information Theory
dc.subject.fieldofresearchQuantum Optics
dc.subject.fieldofresearchQuantum Physics not elsewhere classified
dc.subject.fieldofresearchOptical Physics
dc.subject.fieldofresearchQuantum Physics
dc.subject.fieldofresearchNanotechnology
dc.subject.fieldofresearchcode010503
dc.subject.fieldofresearchcode020604
dc.subject.fieldofresearchcode020699
dc.subject.fieldofresearchcode0205
dc.subject.fieldofresearchcode0206
dc.subject.fieldofresearchcode1007
dc.titleFinding the Kraus decomposition from a master equation and vice versa
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.rights.copyright© 2007 Taylor & Francis. This is an electronic version of an article published in Journal of Modern Optics, Vol.54(12), 2007, pp.1695-1716. Journal of Modern Optics is available online at: http://www.tandfonline.com with the open URL of your article.
gro.date.issued2007
gro.hasfulltextFull Text
gro.griffith.authorHall, Michael J.


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record